首页 | 本学科首页   官方微博 | 高级检索  
     


Ultrasound-Enhanced Protective Effect of Tetramethylpyrazine via the ROS/HIF-1A Signaling Pathway in an in Vitro Cerebral Ischemia/Reperfusion Injury Model
Authors:Chunbing Zhang  Meihong Shen  Fengmeng Teng  Pengfei Li  Feng Gao  Juan Tu  Linjiao Luo  Chih-Kuang Yeh  Dong Zhang
Abstract:Reactive oxygen species-induced oxidative stress is an important pathophysiological process during cerebral ischemia/reperfusion (I/R) injury. It has been reported that the protective effect of tetramethylpyrazine (TMP) against cerebral I/R injury can be significantly improved by its combination with ultrasound exposure. However, the molecular mechanisms and signaling pathways underlying the synergistic protective effect remain unclear. In the present work, the damage induced by I/R injury was modeled by glutamate-induced toxicity to pheochromocytoma (PC12) cells. The ultrasound-enhanced protective effect of TMP was systemically investigated by measuring variations in cell viability, cell migration and levels of intracellular reactive oxygen species, the oxidative stress-related protein glutathione, apoptosis-related proteins (caspase-8, -9 and -3), as well as expression of related genes (hypoxia-inducible factor-1a, p53, murine double minute2). The results suggest that the ultrasound-enhanced protective effect of TMP against cerebral I/R injury might act via the reactive oxygen species/hypoxia-inducible factor-1a signaling pathway, and an appropriate ultrasound intensity should be selected to achieve an optimal synergistic neuroprotective effect.
Keywords:Cerebral ischemia/Reperfusion injury  Neuroprotective effect  Tetramethylpyrazine  Ultrasound-mediated sonoporation  Signaling pathways
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号