首页 | 本学科首页   官方微博 | 高级检索  
检索        


Newly developed hybrid suture without lubricant: noninvasive in vivo assessment of biocompatibility with multiparametric MR imaging.
Authors:Amidou S Traoré  Marie-France Guidoin  Yves Marois  Ze Zhang  Yvan Douville  Robert Guidoin  Martin W King  André-Pierre Legrand
Institution:Department of Surgery, Laval University, and Quebec Biomaterials Institute St Fran?ois d'Assise Hospital, CHUQ, Quebec City, Quebec, Canada.
Abstract:Magnetic resonance imaging (MRI) and magnetic resonance (MR) relaxometry were used to assess noninvasively the tissue response of a new uncoated hybrid braided suture made from a combination of ultra-high-molecular-weight polyethylene (UHMWPE) and polyester (polyethylene terephthalate) (PET) yarns in comparison to a silicone impregnated braided 100% polyester (PET) control suture (Ticron). Both biomaterials were monitored for a period of 30 days following implantation in both incised and nonincised paravertebral rabbit muscles. In all cases, MR images and relaxometry demonstrated that the hybrid suture elicited either a milder or a similar tissue and cellular response compared to the control suture. These findings were confirmed by conventional histological analysis of the surrounding tissues. They also demonstrated that the hybrid suture promoted faster healing in terms of collagen infiltration between the yarns and individual filaments. This milder inflammatory reaction and improved biocompatibility represent a real advantage in the healing performance of sutures for cardiac and vascular surgery, and support the need for continued research and development of hybrid structures. This study also demonstrated the ability of MRI techniques to noninvasively evaluate the biocompatibility of biomaterials. By extending the capacity of MR diagnostic tools from patients to experimental animals, it is now possible to validate the healing performance of foreign materials with statistical reliability and fewer animals.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号