首页 | 本学科首页   官方微博 | 高级检索  
检索        


Somatostatin inhibits oxidative respiration in pancreatic beta-cells
Authors:Daunt Mathew  Dale Oliver  Smith Paul A
Institution:Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Medical School, Nottingham NG7 2UH, United Kingdom.
Abstract:Somatostatin potently inhibits insulin secretion from pancreatic beta-cells. It does so via activation of ATP-sensitive K+-channels (KATP) and G protein-regulated inwardly rectifying K+-channels, which act to decrease voltage-gated Ca2+-influx, a process central to exocytosis. Because KATP channels, and indeed insulin secretion, is controlled by glucose oxidation, we investigated whether somatostatin inhibits insulin secretion by direct effects on glucose metabolism. Oxidative metabolism in beta-cells was monitored by measuring changes in the O2 consumption (DeltaO2) of isolated mouse islets and MIN6 cells, a murine-derived beta-cell line. In both models, glucose-stimulated DeltaO2, an effect closely associated with inhibition of KATP channel activity and induction of electrical activity (r > 0.98). At 100 nm, somatostatin abolished glucose-stimulated DeltaO2 in mouse islets (n = 5, P < 0.05) and inhibited it by 80 +/- 28% (n = 17, P < 0.01) in MIN6 cells. Removal of extracellular Ca2+, 5 mm Co2+, or 20 microm nifedipine, conditions that inhibit voltage-gated Ca2+ influx, did not mimic but either blocked or reduced the effect of the peptide on DeltaO2. The nutrient secretagogues, methylpyruvate (10 mm) and alpha-ketoisocaproate (20 mm), also stimulated DeltaO2, but this was unaffected by somatostatin. Somatostatin also reversed glucose-induced hyperpolarization of the mitochondrial membrane potential monitored using rhodamine-123. Application of somatostatin receptor selective agonists demonstrated that the peptide worked through activation of the type 5 somatostatin receptor. In conclusion, somatostatin inhibits glucose metabolism in murine beta-cells by an unidentified Ca2+-dependent mechanism. This represents a new signaling pathway by which somatostatin can inhibit cellular functions regulated by glucose metabolism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号