首页 | 本学科首页   官方微博 | 高级检索  
检索        


The impact of partial-volume effects in dynamic susceptibility contrast magnetic resonance perfusion imaging
Authors:Chen Jean J  Smith Michael R  Frayne Richard
Institution:Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada.
Abstract:PURPOSE: To demonstrate the degree of the cerebral blood flow (CBF) estimation bias that could arise from distortion of the arterial input function (AIF) as a result of partial-volume effects (PVEs) in dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI). MATERIALS AND METHODS: A model of the volume fraction an artery occupies in a voxel was devised, and a mathematical relationship between the amount of PVE and the measured baseline MR signal intensity was derived. Based on this model, simulation studies were performed to assess the impact of PVE on CBF. Furthermore, the effectiveness of linear PVE compensation approaches on the concentration function was investigated. RESULTS: Simulation results showed a nonlinear relationship between PVE and the resulting CBF measurement error. In addition to AIF underestimation, PVE also causes distortions of AIF frequency characteristics, leading to CBF errors varying with mean transit time (MTT). An uncorrected AIF measured at a voxel with a partial-volume fraction of
Keywords:perfusion‐weighted imaging  partial‐volume effects  arterial input function (AIF)  dynamic susceptibility contrast imaging  cerebral blood flow (CBF)  absolute CBF calibration
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号