首页 | 本学科首页   官方微博 | 高级检索  
检索        


Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles
Authors:Meret Aeppli  Sbastien Giroud  Sanja Vranic  Andreas Voegelin  Thomas B Hofstetter  Michael Sander
Institution:aInstitute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland;bEawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
Abstract:Anaerobic microbial respiration in suboxic and anoxic environments often involves particulate ferric iron (oxyhydr-)oxides as terminal electron acceptors. To ensure efficient respiration, a widespread strategy among iron-reducing microorganisms is the use of extracellular electron shuttles (EES) that transfer two electrons from the microbial cell to the iron oxide surface. Yet, a fundamental understanding of how EES–oxide redox thermodynamics affect rates of iron oxide reduction remains elusive. Attempts to rationalize these rates for different EES, solution pH, and iron oxides on the basis of the underlying reaction free energy of the two-electron transfer were unsuccessful. Here, we demonstrate that broadly varying reduction rates determined in this work for different iron oxides and EES at varying solution chemistry as well as previously published data can be reconciled when these rates are instead related to the free energy of the less exergonic (or even endergonic) first of the two electron transfers from the fully, two-electron reduced EES to ferric iron oxide. We show how free energy relationships aid in identifying controls on microbial iron oxide reduction by EES, thereby advancing a more fundamental understanding of anaerobic respiration using iron oxides.

The use of iron oxides as terminal electron acceptors in anaerobic microbial respiration is central to biogeochemical element cycling and pollutant transformations in many suboxic and anoxic environments (16). To ensure efficient electron transfer to solid-phase ferric iron, Fe(III), at circumneutral pH, metal-reducing microorganisms from diverse phylae use dissolved extracellular electron shuttle (EES), including quinones (79), flavins (1016), and phenazines (1719), to transfer two electrons per EES molecule from the respiratory chain proteins in the outer membrane of the microbial cell to the iron oxide (17, 20, 21). The oxidized EES can diffuse back to the cell surface for rereduction, thereby completing the catalytic redox cycle involving the EES.The electron transfer from the reduced EES to Fe(III) is considered a key step in overall microbial Fe(III) respiration. Several lines of evidence suggest that the free energy of the electron transfer reaction, ΔrG, controls Fe(III) reduction rates (15, 17, 22, 23). For instance, microbial Fe(III) oxide reduction by dissolved model quinones as EES was accelerated only for quinones with standard two-electron reduction potentials, EH,1,20, that fell into a relatively narrow range of 180±80 mV at pH 7 (24). Furthermore, in abiotic experiments, Fe(III) reduction rates by EES decreased with increasing ΔrG that resulted from increasing either EH,1,20 of the EES (25, 26), the concentration of Fe(II) in the system (27), or solution pH (25, 26, 28). However, substantial efforts to relate Fe(III) reduction rates for different EES species, iron oxides, and pH to the EH,1,20 averaged over both electrons transferred from the EES to the iron oxides were only partially successful (25, 28). Reaction free energies of complex redox processes involving the transfer of multiple electrons can readily be calculated using differences in the reduction potentials averaged over all electrons transferred, and this approach is well established in biogeochemistry and microbial ecology. For kinetic considerations, however, the use of averaged reduction potentials is inappropriate.Herein, we posit that rates of Fe(III) reduction by EES instead relate to the ΔrG of the less exergonic first one-electron transfer from the two-electron reduced EES species to the iron oxide, following the general notion that reaction rates scale with reaction free energies (29). Our hypothesis is based on the fact that, at circumneutral to acidic pH and for many EES, the reduction potential of the first electron transferred to the fully oxidized EES to form the one-electron reduced intermediate semiquinone species, EH,1, is lower than the reduction potential of the second electron transferred to the semiquinone to form the fully two-electron reduced EES species, EH,2 i.e., EH,1<EH,2 (3033)]. This difference in one-electron reduction potentials implies that the two-electron reduced EES (i.e., the hydroquinone) is the weaker one-electron reductant for Fe(III) as compared to the semiquinone species. We therefore expect that rates of iron oxide reduction relate to the ΔrG of the first electron transferred from the hydroquinone to Fe(III). The ΔrG of this first electron transfer may even be endergonic provided that the two-electron transfer is exergonic.We verified our hypothesis in abiotic model systems by demonstrating that reduction rates of two geochemically important crystalline iron oxides, goethite and hematite, by two-electron reduced quinone- and flavin-based EES over a wide pH range, and therefore thermodynamic driving force for Fe(III) reduction, correlate with the ΔrG of the first electron transferred from the fully reduced EES to Fe(III). We further show that rates of goethite and hematite reduction by EES reported in the literature are in excellent agreement with our rate data when comparing rates on the basis of the thermodynamics of the less exergonic first of the two electron transfers.
Keywords:microbial iron oxide reduction  anaerobic respiration  free energy relationship  one-electron reduction potential
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号