首页 | 本学科首页   官方微博 | 高级检索  
检索        


Different roles of two nitric oxide activated pathways in spinal long-term potentiation of C-fiber-evoked field potentials
Authors:Zhang Xi-Chun  Zhang Yu-Qiu  Zhao Zhi-Qi
Institution:Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.
Abstract:There is accumulating evidence implicating the involvement of nitric oxide (NO) in spinal central sensitization. The long-term potentiation (LTP) of spinal C-fiber-evoked field potentials is considered as a fundamental mechanism of sensitization of nociceptive neurons in the spinal cord. The present study examined the roles of soluble guanylate cyclase (sGC) or ADP-ribosyltransferase (ADPRT), two potential NO targets, in spinal LTP. The results showed that (1) administration of sGC inhibitors, methyl blue (MB, 4mM, 20 microl) or 1H-1,2,4]oxadiazolo4,3-a]-quiloxalin-1-one (ODQ, 10 microM, 20 microl) before tetanic stimulation, significantly inhibited the induction of spinal LTP, and this was reversed by 8-Br-cGMP, a membrane-permeable cGMP analog. However, the maintenance of spinal LTP was not changed when application of ODQ 2h after tetanic stimulation. (2) Although our previous experiments have identified a key role for NO in the induction of spinal LTP, NO synthase (NOS) inhibitor, L-NAME (1mM, 20 microl) or hemoglobin (2mg/ml, 20 microl), a scavenger of NO, had no effect on established spinal LTP when applied 2h after the induction of spinal LTP. (3) The mono-ADPRT inhibitor, nicotinamide (10mM, 20 microl), had no effect on the induction and maintenance of spinal LTP. However, the poly-ADPRT inhibitor, benzamide (100 microM, 20 microl), inhibited its maintenance, but not its induction. The results suggest that NO-stimulated guanylyl cyclase activity plays a critical role in the induction of LTP of C-fiber-evoked field potentials in the spinal cord, whereas NO-related poly-ADPRT activity contributes to the maintenance of spinal LTP.
Keywords:Nitric oxide  Soluble guanylate cyclase  ADP-ribosyltransferase  Long-term potentiation  Spinal cord  Field potentials
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号