首页 | 本学科首页   官方微博 | 高级检索  
     

人工智能辅助床旁超声诊断肾创伤的基础研究
引用本文:马骏,罗渝昆,何雪磊,高菡静,王坤,宋青,王妍洁,陈淑媛,余桂花. 人工智能辅助床旁超声诊断肾创伤的基础研究[J]. 中华医学超声杂志(电子版), 2022, 19(3): 256-261. DOI: 10.3877/cma.j.issn.1672-6448.2022.03.012
作者姓名:马骏  罗渝昆  何雪磊  高菡静  王坤  宋青  王妍洁  陈淑媛  余桂花
作者单位:1. 100853 北京,解放军医学院;100853 北京,解放军总医院第一医学中心超声科2. 100853 北京,解放军总医院第一医学中心超声科3. 710127 西安,西北大学信息科学与技术学院4. 100190 北京,中科院自动化研究所分子影像重点实验室
摘    要:目的探讨基于卷积神经网络(CNN)构建的人工智能辅助诊断模型对肾钝性创伤超声诊断的应用价值。 方法建立不同程度动物肾创伤模型,通过床旁超声仪采集正常肾及创伤肾超声图片,分成训练集及测试集,根据造模位置和超声造影结果,手动勾画出肾轮廓,采用3折交叉验证进行分类训练及测试。绘制受试者工作特征(ROC)曲线,计算人工智能辅助诊断模型的敏感度、特异度、准确性和曲线下面积(AUC)。 结果采集正常肾图片共1737张,各级别创伤肾图片共2125张,经过对测试集的验证,该模型可自动对肾创伤有无进行分类,对肾创伤诊断的平均敏感度为73%、平均特异度为85%、平均准确性为79%、AUC为0.80,诊断价值较高。 结论基于CNN构建的深度学习模型辅助床旁超声仪在诊断肾创伤有无分类中取得了较满意的结果。

关 键 词:创伤  超声,床旁  人工智能  深度学习  
收稿时间:2021-12-13

Artificial intelligence aided point of care ultrasound for diagnosis of renal injury: a pilot study
Jun Ma,Yukun Luo,Xuelei He,Hanjing Gao,Kun Wang,Qing Song,YanJie Wang,Shuyuan Chen,Guihua Yu. Artificial intelligence aided point of care ultrasound for diagnosis of renal injury: a pilot study[J]. Chinese Journal of Medical Ultrasound, 2022, 19(3): 256-261. DOI: 10.3877/cma.j.issn.1672-6448.2022.03.012
Authors:Jun Ma  Yukun Luo  Xuelei He  Hanjing Gao  Kun Wang  Qing Song  YanJie Wang  Shuyuan Chen  Guihua Yu
Abstract:ObjectiveTo explore the application value of artificial intelligence aided diagnosis model based on convolutional neural network (CNN) in ultrasonic diagnosis of blunt renal trauma. MethodsRabbits were used to simulate different grades of renal trauma model of renal trauma of different degrees was established. The ultrasonic images of the normal kidney and renal trauma were collected by point of care ultrasound (POCUS) and divided into either a training or a test cohort. According to the modeling position and contrast-enhanced ultrasound results, the renal contour was manually drawn and classified for training, followed by 3-fold cross-validation testing. The sensitivity, specificity, accuracy, and area under curve (AUC) of the artificial intelligence aided diagnosis model were calculated. ResultsA total of 1737 images of the normal kidney and 2125 images of traumatic kidney were collected. After the verification of the test set, the model can automatically classify the presence or absence of renal trauma. The average sensitivity for renal trauma diagnosis was 73%, the average specificity was 85%, the average accuracy was 79%, and the AUC was 0.80. ConclusionThe deep learning assisted POCUS model constructed based on CNN has achieved satisfactory results in the diagnosis and classification of renal trauma.
Keywords:Trauma  Ultrasound   point of care  Artificial intelligence  Deep learning  
点击此处可从《中华医学超声杂志(电子版)》浏览原始摘要信息
点击此处可从《中华医学超声杂志(电子版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号