首页 | 本学科首页   官方微博 | 高级检索  
检索        


Crkl is constitutively tyrosine phosphorylated in platelets from chronic myelogenous leukemia patients and inducibly phosphorylated in normal platelets stimulated by thrombopoietin
Authors:Oda  A; Miyakawa  Y; Druker  BJ; Ishida  A; Ozaki  K; Ohashi  H; Wakui  M; Handa  M; Watanabe  K; Okamoto  S; Ikeda  Y
Abstract:Platelet functions such as aggregation and clot retraction are often abnormal in chronic mylogenous leukemia (CML) patients. However, the molecular mechanisms of these altered functions are unknown. As expression of the p210bcr-abl oncogene product, a constitutively active tyrosine kinase, is known to have an essential role in the pathogenesis of CML and tyrosine phosphorylation is intimately involved in various aspects of platelet activation, we examined the pattern of protein tyrosine phosphorylation in platelets from 15 CML patients by immunoblotting with a monoclonal antiphosphotyrosine antibody (4G10). Before and after stimulation with thrombin, the only consistent difference between normal and CML platelets was the presence of a tyrosine phosphorylated protein with a relative molecular weight of 39 kD. This tyrosine phosphorylated protein was identified as crid, an SH2, SH3 containing adapter protein. Thus, as previously demonstrated for neutrophils from CML patients, tyrosine phosphorylation of p39crkl persists in mature platelets. No tyrosine phosphorylation of crid was detected following stimulation with thrombin in normal platelets. However, crkl became incorporated into the Triton X-100 insoluble residue following thrombin stimulation in a manner dependent on platelet aggregation. Further, we found that crkl is an endogenous substrate for calpain, a protease that may be involved in postaggregation signaling processes. This suggests that crkl may be involved in the reorganization of the cytoskeleton during normal platelet aggregation and its tyrosine phosphorylation in CML platelets may contribute to the abnormal platelet function in CML patients. Finally, we found that thrombopoietin induces tyrosine phosphorylation of crk1 in normal platelets and FDCP cells genetically engineered to express human c-Mpl. This suggests that crk1 can be phosphorylated by a kinase other than p210bcr-abl and that crk1 may have a role in signaling by thrombopoietin.
Keywords:
点击此处可从《Blood》浏览原始摘要信息
点击此处可从《Blood》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号