An Efficient Dopant for Introducing Magnetism into Topological Insulator Bi2Se3 |
| |
Authors: | Dan Wang Cui-E Hu Li-Gang Liu Min Zhang Xiang-Rong Chen |
| |
Affiliation: | 1.Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;2.College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China;3.School of Physics and Astronomy, China West Normal University, Nanchong 637002, China; |
| |
Abstract: | In this work, we obtained an effective way to introduce magnetism into topological insulators, and successfully fabricated single crystal C-Bi2Se3. The structural, electrical and magnetic properties of non-magnetic element X (B, C and N) doped at Bi, Se1, Se2 and VDW gap sites of Bi2Se3 were studied by the first principles. It is shown that the impurity bands formed inside the bulk inverted energy gap near the Fermi level with C doping Bi2Se3. Due to spin-polarized ferromagnetic coupling, the time inversion symmetry of Bi2Se3 is destroyed. Remarkably, C is the most effective dopant because of the magnetic moment produced by doping at all positions. The experiment confirmed that the remnant ferromagnetism Mr is related to the C concentration. Theoretical calculations and experiments confirmed that carbon-doped Bi2Se3 is ferromagnetic, which provides a plan for manipulating topological properties and exploring spintronic applications. |
| |
Keywords: | topological insulator Bi2Se3 density functional theory magnetism |
|
|