Reduction in hippocampal cholinergic innervation is unrelated to recognition memory impairment in aged rhesus monkeys |
| |
Authors: | Calhoun Michael E Mao Ying Roberts Jeffrey A Rapp Peter R |
| |
Affiliation: | Kastor Neurobiology of Aging Laboratories, Fishberg Research Center for Neurobiology, Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, New York 10029-6574, USA. |
| |
Abstract: | Alterations in the basal forebrain cholinergic system have been widely studied in brain aging and Alzheimer's disease, but the magnitude of decline and relationship to cognitive impairment are still a matter of debate. The rhesus monkey (Macaca mulatta) provides a compelling model to study age-related memory decline, as the pattern of impairment closely parallels that observed in humans. Here, we used antibodies against the vesicular acetylcholine transporter and a new stereological technique to estimate total cholinergic fiber length in hippocampal subregions of behaviorally characterized young and aged rhesus monkeys. The analysis revealed an age-related decline in the length of cholinergic fibers of 22%, which was similar across the hippocampal subregions studied (dentate gyrus granule cell and molecular layers, CA2/3-hilus, and CA1), and across the rostral-caudal extent of the hippocampus. This effect, however, was unrelated to performance on the delayed nonmatching-to-sample task, a test of recognition memory sensitive to hippocampal system dysfunction and cognitive aging in monkeys. These findings indicate that a decline in cholinergic input fails to account for the influence of normal aging on memory supported by the primate hippocampal region. |
| |
Keywords: | acetylcholine aging cognition nonhuman primate hippocampus stereology |
本文献已被 PubMed 等数据库收录! |
|