Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps |
| |
Authors: | Harley B A Spilker M H Wu J W Asano K Hsu H-P Spector M Yannas I V |
| |
Affiliation: | Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass., USA. |
| |
Abstract: | The experimental study of peripheral nerve regeneration has depended heavily on the use of a nerve chamber in which the stumps of the transected nerve are inserted. A large variety of chamber fillings and chamber types have been used in an effort to induce a higher quality of regeneration across the gap initially separating the two stumps. In this study we studied the morphology of nerves regenerated across a 15 mm gap following implantation of a series of five chambers. The chambers were fabricated from type I collagen and possessed identical pore volume fractions as well as average pore diameters, but differed in cross-link density continuously along the series. The residual mass of the implanted chambers at 9 weeks was observed to increase continuously with increasing cross-link density along the series, indicating a continuous decrease in degradation rate. The quality of regenerated nerves, determined by the number of large diameter fibers (A-fibers) per nerve, the average diameter of all axons and the ratio of area occupied by axons (N-Ratio), was superior at an intermediate level of chamber degradation rate. The maximal quality of peripheral nerve regeneration corresponded to an optimal degradation rate with an estimated chamber half-life of approximately 2-3 weeks following implantation. A speculative mechanistic explanation of the observed optimum focuses on the hypothetical role of cell and cytokine traffic that may take place through holes in the chamber generated by the degradation process. The data show the presence of a hitherto unreported optimal chamber degradation rate that leads to regenerated nerves of maximum quality. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|