首页 | 本学科首页   官方微博 | 高级检索  
     


Actin polymerization as a key innate immune effector mechanism to control Salmonella infection
Authors:Si Ming Man  Andrew Ekpenyong  Panagiotis Tourlomousis  Sarra Achouri  Eugenia Cammarota  Katherine Hughes  Alessandro Rizzo  Gilbert Ng  John A. Wright  Pietro Cicuta  Jochen R. Guck  Clare E. Bryant
Affiliation:aDepartment of Veterinary Medicine and;bSector of Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0ES, United Kingdom; and;cBiotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
Abstract:Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1β recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1β production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.A critical step in disease pathogenesis for many clinically important bacteria is their ability to infect and survive within host cells such as macrophages. Salmonella enterica, a pathogen that resides and replicates within macrophages, causes a range of life-threatening diseases in humans and animals, and accounts for 28 million cases of enteric fever worldwide each year (1). S. enterica infects phagocytes by a process that requires cytoskeletal reorganization (2). This bacterium resides in a Salmonella-containing vacuole (SCV) within host macrophages, and this intracellular lifestyle enables them to avoid extracellular antimicrobial killing, evade adaptive immune responses, and potentially to spread to new sites to seed new infectious foci within host tissue, which eventually develop into granulomas (3). Survival and growth of S. enterica within phagocytes is critical for virulence (4) and host restriction of the intracellular bacterial load is, therefore, paramount in surviving salmonellosis. Salmonella delivers microbial effector proteins into the host cell via the type III secretion systems (T3SS), mediated by the Salmonella pathogenicity island-1 and -2 (SPI-1 and SPI-2), to subvert cellular functions and facilitate intracellular survival (5).Microbes are recognized by macrophages through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), which initiate innate immune responses, including cytokine production and pathogen killing (6). NLRs drive the formation of inflammasomes—macromolecular protein complexes—comprising one or more NLRs, usually an adaptor protein (ASC) and the effector protein caspase-1, which then cleaves prointerleukin-1β (IL-1β) and pro–IL-18 into biologically active cytokines, and initiates macrophage cell death by pyroptosis (7). NLRC4, in concert with NAIPs 1, 2, 5, and 6, is a key PRR that forms an inflammasome complex upon sensing flagellin and/or the inner rod or needle proteins (PrgJ and PrgI, respectively) of the SPI-1 T3SS of S. enterica serovar Typhimurium (S. Typhimurium) (811). Activation of the NLRC4 inflammasome by Salmonella infection results in IL-1β and IL-18 production driven by an ASC-dependent pathway and macrophage pyroptosis driven by an ASC-independent pathway (12, 13). A second, noncanonical, NLR signaling pathway has been described, which requires caspase-11 to initiate delayed cell death and NLRP3 inflammasome activation (1416). Effective clearance of Salmonella infection in host cells may therefore require a coordinated effort between different inflammasome signaling pathways.We, and others, have shown that NLRC4 is important in regulating bacterial burden of S. Typhimurium in vivo (1719). A recent study revealed that Salmonella-infected epithelial cells are extruded from the intestinal epithelium in a process that requires NLRC4 (20). The molecular mechanism behind how NLRC4 restricts bacterial burden in macrophages infected with Salmonella is still unknown. Here, we identify an actin-dependent mechanism that controls NLRC4-mediated regulation of bacterial replication in macrophages infected with S. Typhimurium. Activation of NLRC4 in infected macrophages mediates the production of reactive oxygen species (ROS) to inhibit bacterial replication and limits additional bacterial uptake by inducing mechanical stiffening the cell via actin polymerization. Overall, we describe a previously unidentified effector mechanism, governed by actin and the NLRC4 inflammasome, to control Salmonella infection in macrophages.
Keywords:innate immunity   ASC   caspase-1   cytoskeleton   ROS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号