首页 | 本学科首页   官方微博 | 高级检索  
     


Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy
Authors:Valentina Di Foggia  Xinyu Zhang  Danilo Licastro  Mattia F.M. Gerli  Rahul Phadke  Francesco Muntoni  Philippos Mourikis  Shahragim Tajbakhsh  Matthew Ellis  Laura C. Greaves  Robert W. Taylor  Giulio Cossu  Lesley G. Robson  Silvia Marino
Abstract:The Polycomb group (PcG) protein Bmi1 is an essential epigenetic regulator of stem cell function during normal development and in adult organ systems. We show that mild up-regulation of Bmi1 expression in the adult stem cells of the skeletal muscle leads to a remarkable improvement of muscle function in a mouse model of Duchenne muscular dystrophy. The molecular mechanism underlying enhanced physiological function of Bmi1 depends on the injury context and it is mediated by metallothionein 1 (MT1)–driven modulation of resistance to oxidative stress in the satellite cell population. These results lay the basis for developing Bmi1 pharmacological activators, which either alone or in combination with MT1 agonists could be a powerful novel therapeutic approach to improve regeneration in muscle wasting conditions.Skeletal muscle is characterized by a remarkable capacity to regenerate after injury, mainly due to the function of satellite cells, the main skeletal muscle stem cells (Brack and Rando, 2012; Wang and Rudnicki, 2012). Polycomb group (PcG) proteins are essential regulators of stem cell function during normal development and in adult organs. They form multi-protein chromatin-associated complexes that play an essential role in the genome-wide epigenetic-mediated remodeling of gene expression during myogenic differentiation of satellite cells, mainly through posttranslational modifications of histones (Asp et al., 2011). Ezh2 and Bmi1 are required for adult satellite cell homeostasis and proliferation in response to muscle injury, an effect mediated at least in part by repression of the ink4a locus (Juan et al., 2011; Robson et al., 2011). Importantly, although Bmi1 is expressed in several types of cancer and its mechanism of action may be similar in a non-neoplastic and neoplastic context, its overexpression does not initiate tumorigenesis (He et al., 2009; Yadirgi et al., 2011).An emerging role for PcG proteins is their involvement in DNA repair (Liu et al., 2009; Facchino et al., 2010; Ismail et al., 2010; Ginjala et al., 2011; Pan et al., 2011). Bmi1−/−-derived cells show significant mitochondrial dysfunction accompanied by sustained increase in reactive oxygen species (ROS) production that are sufficient to engage the DNA repair pathway (Liu et al., 2009), which is in turn impaired, thus leading to a magnified cellular damage. The balance between intracellular ROS and antioxidant molecules is vital in determining the rate of oxidative damage accumulation and the impaired function of satellite cells in aging and in myopathies, in which decreased anti-oxidative capacity has been documented (Fulle et al., 2005; Whitehead et al., 2006; Tidball and Wehling-Henricks, 2007). X-linked Duchenne muscular dystrophy (DMD) is the most common primary myopathy caused by the loss of the dystrophin protein from the plasma membrane, which causes loss of its integrity and fiber damage during repeated cycles of muscle degeneration and regeneration (Duncan, 1989). The proliferative capacity of myogenic cells was reported to be rapidly exhausted in dystrophin-deficient muscle, also because they are more sensitive to oxidative stress injury, leading to reduced and defective regeneration of the muscle as the disease progresses (Blau et al., 1983, 1985; Disatnik et al., 1998). Moreover, enzymatic adaptations to exercise-induced production of ROS and free radical damage are significantly decreased in dystrophic compared with normal muscles (Faist et al., 1998, 2001). Overall, an impaired protection against ROS in dystrophic muscle appears to contribute to disease progression as also indicated by the beneficial, albeit transient, effect of antioxidants in ameliorating the skeletal muscle pathophysiology of DMD patients (Whitehead et al., 2008).Metallothionein 1 (MT1) and MT2 are ubiquitously expressed (Kägi and Hunziker, 1989) low molecular weight, cysteine–rich zinc binding proteins. Although the role of MT1 in promoting cell proliferation is controversial (Smith et al., 2008), studies on MT-null liver cells showed their failure to regenerate after oxidative stress injury (Oliver et al., 2006).Here, we show that overexpression of Bmi1 in the satellite cells significantly improves muscle strength through enhanced MT1-mediated protection of these cells from oxidative stress in a mouse model of dystrophinopathies but not after acute traumatic injury.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号