首页 | 本学科首页   官方微博 | 高级检索  
检索        


Development of a respirable, sustained release microcarrier for 5-fluorouracil I: In vitro assessment of liposomes, microspheres, and lipid coated nanoparticles
Authors:Hitzman Cory J  Elmquist William F  Wattenberg Lee W  Wiedmann Timothy S
Institution:Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
Abstract:The release rate of 5-fluorouracil (5-FU) from liposomes, microspheres, and lipid-coated nanoparticles (LNPs) was determined by microdialysis to investigate their use as a respirable delivery system for adjuvant (postsurgery) therapy of lung cancer. 5-FU was incorporated into liposomes using thin film hydration and into microspheres and LNPs by spray drying. Primary particle size distributions were measured by dynamic light scattering. Liposomes released 5-FU in 4-10 h (k(1) = 0.44-2.31/h, first-order release model). Extruded vesicles with diameters less than one micron released 5-FU more quickly than nonextruded vesicles. With poly-(lactide) (PLA) and Poly-(lactide-co-glycolide) (PLGA) microspheres, slower release rates were observed (k(1) = 0.067-0.202/h). Increasing the lactide:glycolide ratio (50:50-100:0) resulted in a progressive decrease in the release rate of 5-FU. poly-(lactide-co-caprolactone) (PLCL) microspheres released 5-FU more rapidly compared to PLGA systems (k(1) = 0.254-0.259/h). LNPs formulated with polymeric core excipients had lower release rates compared to monomeric excipients (k(1) = 0.043-0.105/h vs. k(1) = 0.192-0.345/h). Changing the lipid chain length of the shell lipid components had a relatively minor effect (k(1) = 0.043-0.129/h). Overall, these systems yielded a wide range of delivery durations that may be suitable for use as an inhalation delivery system for adjuvant therapy of lung cancer.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号