Use of genetic toxicology information for risk assessment |
| |
Authors: | Dearfield Kerry L Moore Martha M |
| |
Affiliation: | Office of the Science Advisor (8105R), US Environmental Protection Agency, Washington, District of Columbia, USA. |
| |
Abstract: | Genetic toxicology data are used worldwide in regulatory decision-making. On the 25th anniversary of Environmental and Molecular Mutagenesis, we think it is important to provide a brief overview of the currently available genetic toxicity tests and to outline a framework for conducting weight-of-the-evidence (WOE) evaluations that optimize the utility of genetic toxicology information for risk assessment. There are two major types of regulatory decisions made by agencies such as the Environmental Protection Agency (EPA) and the Food and Drug Administration (FDA): (1) the approval and registration of pesticides, pharmaceuticals, medical devices, and medical-use products, and (2) the setting of standards for acceptable exposure levels in air, water, and food. Genetic toxicology data are utilized for both of these regulatory decisions. The current default assumption for regulatory decisions is that chemicals that are shown to be genotoxic in standard tests are, in fact, capable of causing mutations in humans (in somatic and/or germ cells) and that they contribute to adverse health outcomes via a "genotoxic/mutagenic" mode of action (MOA). The new EPA Guidelines for Carcinogen Risk Assessment [Guidelines for Carcinogen Risk Assessment, USEPA, 2005, EPA Publication No. EPA/630/P-03/001F] emphasize the use of MOA information in risk assessment and provide a framework to help identify a possible mutagenic and/or nonmutagenic MOA for potential adverse effects. An analysis of the available genetic toxicity data is now, more than ever, a key component to consider in the derivation of an MOA for characterizing observed adverse health outcomes such as cancer. We provide our perspective and a two-step strategy for evaluating genotoxicity data for optimal use in regulatory decision-making. The strategy includes integration of all available information and provides, first, for a WOE analysis as to whether a chemical is a mutagen, and second, whether an adverse health outcome is mediated via a mutagenic MOA. |
| |
Keywords: | risk assessment mutagenic mode of action genetic toxicology |
本文献已被 PubMed 等数据库收录! |
|