首页 | 本学科首页   官方微博 | 高级检索  
     


Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis
Authors:Tan Michelle H  Sun Zhengwu  Opitz Sarah L  Schmidt Tracy E  Peters John H  George Elizabeth L
Affiliation:Vascular Research Division, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
Abstract:The alternatively spliced and highly conserved EIIIA domain of fibronectin (FN) is included in most FN of the extracellular matrix in embryos. In adults, both extracellular matrix and plasma FN essentially lack EIIIA. In diverse inflammatory situations however, EIIIA is specifically included by regulated RNA splicing. In atherosclerotic lesions, FN, including the EIIIA domain (EIIIA-FN), is abundant, whereas FN in the flanking vessel wall lacks EIIIA. Lesional EIIIA-FN is localized with endothelial cells and macrophage foam cells. To directly test the function of EIIIA-FN, we generated EIIIA-null (EIIIA(-/-)) mice that lack the EIIIA exon and crossed them with apolipoprotein E (ApoE)-null (ApoE(-/-)) mice that develop arterial wall lesions. Compared with ApoE(-/-) controls, EIIIA(-/-)ApoE(-/-) mice had significantly smaller lesions throughout the aortic tree. EIIIA-FN was increased in ApoE(-/-) plasma, and total plasma cholesterol was reduced in EIIIA(-/-)ApoE(-/-) mice, specifically in large lipoprotein particles, suggesting a functional role for plasma EIIIA-FN. To assess a role for macrophage EIIIA-FN in the vessel wall, we conducted in vitro foam cell assays. EIIIA(-/-)ApoE(-/-) macrophages accumulated significantly less intracellular lipid than control ApoE(-/-) cells. These results provide genetic evidence that suggests roles for EIIIA-FN in plasma lipoprotein metabolism and in foam cell formation.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Blood》浏览原始摘要信息
点击此处可从《Blood》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号