首页 | 本学科首页   官方微博 | 高级检索  
检索        


Coordination of multiple muscles in two degree of freedom elbow movements
Authors:Lauren E Sergio  David J Ostry
Institution:(1) Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, H3A 1B1 Montreal, Quebec, Canada;(2) Present address: Département de physiologie, CRSN, Université de Montréal, C.P. 6128, Succursale centre-ville, H3C 3J7 Montreal, Quebec, Canada
Abstract:The present study quantifies electromyographic (EMG) magnitude, timing, and duration in one and two degree of freedom elbow movements involving combinations of flexion-extension and pronation-supination. The aim is to understand the organization of commands subserving motion in individual and multiple degrees of freedom. The muscles tested in this study fell into two categories with respect to agonist burst magnitude: those whose burst magnitude varied with motion in a second degree of freedom at the elbow, and those whose burst magnitude depended on motion in one degree of freedom only. In multiarticular muscles contributing to motion in two degrees of freedom at the elbow, we found that the magnitude of the agonist burst was greatest for movements in which a muscle acted as agonist in both degrees of freedom. The burst magnitudes for one degree of freedom movements were, in turn, greater than for movements in which the muscle was agonist in one degree of freedom and antagonist in the other. It was also found that, for movements in which a muscle acted as agonist in two degrees of freedom, the burst magnitude was, in the majority of cases, not different from the sum of the burst magnitudes in the component movements. When differences occurred, the burst magnitude for the combined movement was greater than the sum of the components. Other measures of EMG activity such as burst onset time and duration were not found to vary in a systematic manner with motion in these two degrees of freedom. It was also seen that several muscles which produced motion in one degree of freedom at the elbow, including triceps brachii (long head), triceps brachii (lateral head), and pronator quadratus displayed first agonist bursts whose magnitude did not vary with motion in a second degree of freedom. However, for the monoarticular elbow flexors brachialis and brachioradialis, agonist burst magnitude was affected by pronation or supination. Lastly, it was observed that during elbow movements in which muscles acted as agonist in one degree of freedom and antagonist in the other, the muscle activity often displayed both agonist and antagonist components in the same movement. It was found that, for pronator teres and biceps brachii, the timing of the bursts was such that there was activity in these muscles concurrent with activity in both pure agonists and pure antagonists. The empirical summation of EMG burst magnitudes and the presence in a single muscle of both agonist and antagonist bursts within a movement suggest that central commands associated with motion in individual degrees of freedom at the elbow may be superimposed to produce elbow movements in two degrees of freedom.
Keywords:Motor control  Arm movement  EMG  Coordination  Kinematics  Human
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号