首页 | 本学科首页   官方微博 | 高级检索  
     

3D U-Net深度学习模型基于盆腔T2WI自动分割盆腔软组织结构
引用本文:刘想,韩超,高歌,朱丽娜,陈卫东,黄嘉豪,王祥鹏,张晓东,王霄英. 3D U-Net深度学习模型基于盆腔T2WI自动分割盆腔软组织结构[J]. 中国医学影像技术, 2022, 38(2): 266-271
作者姓名:刘想  韩超  高歌  朱丽娜  陈卫东  黄嘉豪  王祥鹏  张晓东  王霄英
作者单位:北京大学第一医院医学影像科, 北京 100034;北京赛迈特锐医学科技有限公司, 北京 100011
基金项目:首都卫生发展科研专项(首发2020-2-40710)、北京大学第一医院科研种子基金(2020SF17)。
摘    要:目的 评估3D U-Net深度学习(DL)模型基于盆腔T2WI自动分割盆腔软组织结构的可行性.方法 回顾性分析147例经病理证实或盆腔MRI随访观察确诊的前列腺癌或良性前列腺增生患者,其中28例接受2次、121例接受1次盆腔MR扫描,共175组T2WI;手动标注T2WI所示软组织结构,包括前列腺、膀胱、直肠、双侧精囊腺...

关 键 词:前列腺  骨盆  深度学习  分割
收稿时间:2021-04-19
修稿时间:2021-08-13

3D U-Net deep learning model for automatic segmentation of pelvic soft tissue structures based on pelvic T2WI
LIU Xiang,HAN Chao,GAO Ge,ZHU Lin,CHEN Weidong,HUANG Jiahao,WANG Xiangpeng,ZHANG Xiaodong,WANG Xiaoying. 3D U-Net deep learning model for automatic segmentation of pelvic soft tissue structures based on pelvic T2WI[J]. Chinese Journal of Medical Imaging Technology, 2022, 38(2): 266-271
Authors:LIU Xiang  HAN Chao  GAO Ge  ZHU Lin  CHEN Weidong  HUANG Jiahao  WANG Xiangpeng  ZHANG Xiaodong  WANG Xiaoying
Affiliation:Department of Medical Imaging, Peking University First Hospital, Beijing 100034, China;Beijing Smart Tree Medical Technology Co. Ltd. Beijing 100011, China
Abstract:Objective To explore the feasibility of 3D U-Net deep learning (DL) model for automatic segmentation of pelvic soft tissue structures based on pelvic T2WI. Methods Pelvic MRI of 147 patients with pathologically or pelvic MRI follow-up confirmed prostate cancer or benign prostatic hyperplasia were analyzed retrospectively, including 28 patients underwent 2 times and 121 underwent one time MR scanning, and 175 groups of T2WI were obtained. The pelvic soft tissue structures, i.e. prostate, bladder, rectum, bilateral seminal vesicles, urethra, bilateral obturator muscles and bilateral puborectalis on T2WI were manually labeled. Then the data were divided into training set (n=137), validation set (n=21) and test set (n=17) at the ratio of 8:1:1, and the 3D U-Net segmentation model was trained. Taken manual annotation results as the reference standards, the segmentation performance of 3D U-Net DL model was evaluated according to differences of indexes including Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), precision (PRE), recall (REC), accuracy (ACC) and segmentation volume in test set. Results DSC and JSC of 3D U-Net DL model segmentation of pelvic structures in test set were both >0.90,so were ACC, PRE and REC. The segmentation volumes using 3D U-Net DL model were not statistically different with those of manual annotation (all P>0.05). Conclusion 3D U-Net DL model could be used for automatic segmentation of pelvic soft tissue structures on T2WI.
Keywords:prostate  pelvis  deep learning  segmentation
本文献已被 维普 等数据库收录!
点击此处可从《中国医学影像技术》浏览原始摘要信息
点击此处可从《中国医学影像技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号