首页 | 本学科首页   官方微博 | 高级检索  
     

基于增强T2*加权血管成像序列R2*图肿瘤全域纹理分析预测子宫内膜癌微卫星不稳定性
引用本文:田士峰,刘爱连,郭妍,林涛,陈丽华,王楠,李昕. 基于增强T2*加权血管成像序列R2*图肿瘤全域纹理分析预测子宫内膜癌微卫星不稳定性[J]. 中国医学影像技术, 2022, 38(2): 257-261
作者姓名:田士峰  刘爱连  郭妍  林涛  陈丽华  王楠  李昕
作者单位:大连医科大学附属第一医院放射科, 辽宁 大连 116011;大连医科大学附属第一医院放射科, 辽宁 大连 116011;大连市医学影像人工智能工程技术研究中心, 辽宁 大连 116011;通用电气医疗, 上海 200336
摘    要:目的评估基于增强T2*加权血管成像(ESWAN)序列R2*图的肿瘤全域纹理分析(TA)预测子宫内膜癌(EC)微卫星不稳定性(MSI)的价值。方法回顾性分析38例经术后病理证实、术前接受ESWAN序列盆腔MR扫描的EC患者,其中12例MSI(MSI组)、26例微卫星稳定(MSS,MSS组),经后处理获得R2*图。于R2*图像上逐层手动勾画肿瘤ROI,融合后获得全域感兴趣容积(VOI);采用A.K.分析软件提取其纹理特征,以Spearman相关性分析和梯度提升决策树(GBDT)方法筛选最优纹理特征,构建多元logistic回归模型,用于预测EC MSI状态;以受试者工作特征(ROC)曲线评价模型的诊断效能。结果共提取74个纹理特征,最终筛选出6个最优纹理特征,以之构建预测EC MSI的回归模型。ROC曲线显示,模型的曲线下面积(AUC)、准确率、敏感度及特异度分别为0.95、89.50%、83.30%及92.30%。结论基于ESWAN序列R2*图的肿瘤全域TA有助于术前预测EC MSI。

关 键 词:子宫内膜肿瘤  磁共振成像  微卫星不稳定性
收稿时间:2021-04-21
修稿时间:2021-08-14

Tumor global texture analysis based on enhanced T2*weighted angiography sequence R2* map for predicting microsatellite instability of endometrial carcinoma
TIAN Shifeng,LIU Ailian,GUO Yan,LIN Tao,CHEN Lihu,WANG Nan,LI Xin. Tumor global texture analysis based on enhanced T2*weighted angiography sequence R2* map for predicting microsatellite instability of endometrial carcinoma[J]. Chinese Journal of Medical Imaging Technology, 2022, 38(2): 257-261
Authors:TIAN Shifeng  LIU Ailian  GUO Yan  LIN Tao  CHEN Lihu  WANG Nan  LI Xin
Affiliation:Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;Dalian Medical Imaging Artificial Intelligence Engineering Technology Research Center, Dalian 116011, China;GE Healthcare, Shanghai 200336, China
Abstract:Objective To explore the value of tumor global texture analysis (TA) based on enhanced T2 star weighted angiography (ESWAN) sequence R2* map for predicting microsatellite instability (MSI) of endometrial carcinoma (EC). Methods Preoperative pelvic MRI data of 38 patients with EC confirmed by surgery and pathology, including 12 cases of MSI (MSI group) and 26 of microsatellite stability (MSS, MSS group) were retrospectively analyzed. All patients underwent ESWAN sequence scanning. R2* map was obtained after post-processing. Tumor ROI was manually delineated layer by layer on R2* map, then the whole region volume of interest (VOI) was fused. Texture features of VOI were extracted using A.K. analysis software, and the optimal texture features were selected using Spearman correlation analysis and gradient boosting decision tree (GBDT) methods. Then, a multivariate logistic regression model was constructed to predict EC MSI, and relative operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of this model. Results A total of 74 texture features were extracted, and finally 6 optimal texture features were selected to build the regression model for predicting EC MSI. ROC curve showed that the area under the curve (AUC), accuracy, sensitivity and specificity of this model was 0.95, 89.50%, 83.30% and 92.30%, respectively. Conclusion Tumor global TA based on ESWAN R2* map was helpful to preoperative predicting of EC MSI.
Keywords:endometrial neoplasms  magnetic resonance imaging  microsatellite instability
本文献已被 维普 等数据库收录!
点击此处可从《中国医学影像技术》浏览原始摘要信息
点击此处可从《中国医学影像技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号