Intraoperative passive kinematics of osteoarthritic knees before and after total knee arthroplasty. |
| |
Authors: | Robert A Siston Nicholas J Giori Stuart B Goodman Scott L Delp |
| |
Affiliation: | Department of Bioengineering, S-321 James H. Clark Center, 318 Campus Drive, Stanford University, Stanford, California 94305-5450, USA. |
| |
Abstract: | Total knee arthroplasty is a successful procedure to treat pain and functional disability due to osteoarthritis. However, precisely how a total knee arthroplasty changes the kinematics of an osteoarthritic knee is unknown. We used a surgical navigation system to measure normal passive kinematics from 7 embalmed cadaver lower extremities and in vivo intraoperative passive kinematics on 17 patients undergoing primary total knee arthroplasty to address two questions: How do the kinematics of knees with advanced osteoarthritis differ from normal knees?; and, Does posterior substituting total knee arthroplasty restore kinematics towards normal? Osteoarthritic knees displayed a decreased screw‐home motion and abnormal varus/valgus rotations between 10° and 90° of knee flexion when compared to normal knees. The anterior–posterior motion of the femur in osteoarthritic knees was not different than in normal knees. Following total knee arthroplasty, we found abnormal varus/valgus rotations in early flexion, a reduced screw‐home motion when compared to the osteoarthritic knees, and an abnormal anterior translation of the femur during the first 60° of flexion. Posterior substituting total knee arthroplasty does not appear to restore normal passive varus/valgus rotations or the screw motion and introduces an abnormal anterior translation of the femur during intraoperative evaluation. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1607–1614, 2006 |
| |
Keywords: | computer assisted surgery surgical navigation total knee replacement knee kinematics anterior–posterior translation |
|
|