首页 | 本学科首页   官方微博 | 高级检索  
检索        


Regulation of differentiation of murine progenitor cells derived from blast cell colonies under serum-deprived conditions
Authors:G Migliaccio  A R Migliaccio  K Kaushansky  J W Adamson
Institution:Department of Medicine, University of Washington, Seattle 98195.
Abstract:We have examined the effect of interleukin 3 (IL-3), granulocyte-macrophage (GM)-, granulocyte (G)-, and macrophage (M)-colony-stimulating factors (CSFs) on the induction of GM colonies from highly enriched murine hematopoietic progenitor cells under serum-deprived conditions. Each growth factor was tested alone or in combination with suboptimal concentrations of the others. The effect of each CSF on GM colony growth in fetal bovine serum (FBS)-supplemented cultures of unfractionated marrow cells is reported for comparison. GM-CSF induced GM colony growth in serum-deprived cultures of purified progenitor cells to the same extent as in FBS-supplemented cultures of unfractionated marrow cells. In contrast, IL-3 was only one-tenth as active in promoting the growth of enriched progenitor cells under serum-deprived conditions when compared with its effect on colony growth from unfractionated marrow. M-CSF and G-CSF were almost completely ineffective in both cases. G-CSF induction of GM colony growth from purified progenitor cells was restored by addition of suboptimal concentrations of IL-3 or GM-CSF, suggesting that either IL-3 or GM-CSF is required to observe the effect of G-CSF. Addition of G-CSF to GM-CSF-stimulated cultures did not increase the maximal number of colonies detected, indicating that these two growth factors may act on the same subset of progenitor cells. Addition of GM-CSF or IL-3 to IL-3- or GM-CSF-stimulated cultures, respectively, increased by 40% the maximal number of colonies detected, suggesting that these two factors act on at least partially separate subsets of GM progenitors. These data parallel the recent observations on the control of human GM colony formation under FBS-deprived conditions and support a model for the control of myeloid differentiation that requires the interplay of different growth factors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号