首页 | 本学科首页   官方微博 | 高级检索  
检索        


Molecular mechanisms of anaphylaxis: lessons from studies with murine models
Authors:Finkelman Fred D  Rothenberg Marc E  Brandt Eric B  Morris Suzanne C  Strait Richard T
Institution:Division of Immunology, University of Cincinnati College of Medicine, Ohio 45267-0563, USA. ffinkelman@pol.net
Abstract:Studies with murine models demonstrate 2 pathways of systemic anaphylaxis: one mediated by IgE, Fc epsilonRI, mast cells, histamine, and platelet-activating factor (PAF), and the other mediated by IgG, Fc gammaRIII, macrophages, and PAF. The former pathway requires much less antibody and antigen than the latter. As a result, IgG antibody can block IgE-mediated anaphylaxis induced by small quantities of antigen without mediating Fc gammaRIII-dependent anaphylaxis. The IgE pathway is most likely responsible for most human anaphylaxis, which generally involves small amounts of antibody and antigen; similarities in the murine and human immune systems suggest that the IgG pathway might mediate disease in persons repeatedly exposed to large quantities of antigen. Mice, like human subjects, can experience IgE/Fc epsilonRI/mast cell-mediated gastrointestinal and systemic anaphylaxis in response to ingested antigen. Gastrointestinal symptoms depend on serotonin and PAF; mediator dependence of systemic symptoms has not been determined. Both local and systemic anaphylaxis induced by ingested antigens might be blocked by IgA and IgG antibodies. IL-4 and IL-13 signaling through the IL-4 receptor alpha chain, in addition to promoting the mastocytosis and IgE antibody production that mediate most human anaphylaxis, exacerbates the effector phase of anaphylaxis by increasing target cell responsiveness to vasoactive mediators. As a result, IL-4 receptor alpha chain antagonists might be particularly effective suppressors of anaphylaxis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号