首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease.
Authors:K Uéda   H Fukushima   E Masliah   Y Xia   A Iwai   M Yoshimoto   D A Otero   J Kondo   Y Ihara     T Saitoh
Affiliation:Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla 92093-0624.
Abstract:A neuropathological hallmark of Alzheimer disease (AD) is a widespread amyloid deposition. We analyzed the entire amino acid sequences in an amyloid preparation and found, in addition to the major beta/A4-protein (A beta) fragment, two unknown peptides. We raised antibodies against synthetic peptides using subsequences of these peptides. These antibodies immunostained amyloid in neuritic and diffuse plaques as well as vascular amyloid. Electron microscopic analysis demonstrated that the immunostaining was localized on amyloid fibrils. We have isolated an apparently full-length cDNA encoding a 140-amino-acid protein within which two previously unreported amyloid sequences are encoded in tandem in the most hydrophobic domain. We tentatively named this 35-amino acid peptide NAC (non-A beta component of AD amyloid) and its precursor NACP. NAC is the second component, after A beta, identified chemically in the purified AD amyloid preparation. Secondary structure predictions indicate that the NAC peptide sequence has a strong tendency to form beta-structures consistent with its association with amyloid. NACP is detected as a M(r) 19,000 protein in the cytosolic fraction of brain homogenates and comigrates on immunoblots with NACP synthesized in Escherichia coli from NACP cDNA. NACP mRNA is expressed principally in brain but is also expressed in low concentrations in all tissues examined except in liver, suggesting its ubiquitous and brain-specific functions. The availability of the cDNA encoding full-length NACP should help to elucidate the mechanisms of amyloidosis in AD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号