首页 | 本学科首页   官方微博 | 高级检索  
检索        


Brain cell membrane Na,K-ATPase activity following severe hypoxic injury in the newborn piglet
Authors:Ted S Rosenkrantz  Joanna Kubin  Om P Mishra  Douglass Smith and Maria Delivoria-Papadopoulos
Institution:

a University of Connecticut School of Medicine, Department of Pediatrics, Farmington, CT 06030, USA

b University of Pennsylvania School of Medicine, Department of Physiology, Philadelphia, PA, USA

c University of Pennsylvania School of Medicine, Department of Neurosurgery, Philadelphia, PA, USA

Abstract:This study tests the hypothesis that severe brain hypoxia causes decreased Na+,K+-ATPase activity, resulting in permanent alterations in the neuronal cell membranes. Seventeen anesthetized piglets (normoxic control (NC), no recovery after hypoxia (Group 1), 6 h normoxic recovery (Group 2), and 48 h normoxic recovery (Group 3) were studied. Hypoxia was induced by lowering the FiO2 to maintain PCr/Pi ratio at 25% of baseline for 1 h as monitored by 31P-NMR spectroscopy. PCr/Pi returned to 57% of baseline by 6 h and was normal by 48 h. At termination, cortical tissue Na+,K+-ATPase activity was determined. Na+,K+-ATPase activity was measured in cortical membrane preparations by determining the rate of ATP hydrolysis. NC membranes had Na+,K+-ATPase activity of 58.3 ± 1.3 μM Pi/mg protein/h (mean ± S.E.M.). Na+,K+-ATPase activity was reduced in Groups 1, 2, and 3 (45.8 ± 1.3, 47.4 ± 3.6, 48.7 ± 2.9 μM Pi/mg protein/h) (P < 0.05 compared to NC). There was no differene in enzyme activity among Groups 1, 2, or 3. The data show that in spite of recovery of neuronal oxiditive phosphorylation (PCr/Pi) by 48 h, there is a permanent decrease in Na+,K+-ATPase activity in cells that have undergone severe hypoxic injury. The persistent decrease in Na+,K+-ATPase activity indicates ongoing cell injury following severe cerebral hypoxia, and that recovery of oxidative phosphorylation as indicated by PCr/Pi values cannot be used as an index of recovery of cell function.
Keywords:Newborn  Brain injury  Hypoxia  Na+  K+-ATPase  Outcome  Energy metabolism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号