首页 | 本学科首页   官方微博 | 高级检索  
检索        


Synaptic plasticity in the oedematous human cerebral cortex
Authors:Castejón O J
Institution:Institute of Biological Investigations, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela. ocastejo@cantv.net
Abstract:Synaptic plastic changes are fundamental events which occur spontaneously during development, maturity and aging processes or can be induced by injury or trauma. To examine lesion-induced synaptic plasticity, cortical biopsies were taken from the frontal, parietal, temporal and occipital cortex of living patients during neurosurgical treatment of brain trauma, brain tumours and vascular malformations, and processed for transmission electron microscopy. Enlargement of both pre- and postsynaptic endings, irregularly shaped, lobulated, stellate and bifurcated presynaptic endings and conformational changes of dendritic spines were observed. Numerous flat, curved and invaginated axodendritic and axospinous asymmetric synapses were distinguished and a smaller proportion of axodendritic and axosomatic symmetric synapses. Activated or sensitized synapses showed numerous frontline spheroid synaptic vesicles, prominent dense presynaptic dense projections and increased length of synaptic membrane complex. Perforated synapses, multiple synapses and serial synapses were also found evincing synaptic splitting and formation of new synaptic connections. The overall images suggest increased number of excitatory circuits, which were correlated with the tonico-clonic convulsion or post-traumatic seizures observed in some patients. Numerous coated vesicles were observed in pre- and postsynaptic structures. Increased number of polyribosomes were found in the dendritic shafts. The dilated spine apparatus, the coated vesicles and the increased number of polyribosomes seem to represent a system for synthesis, transport and storage of synaptic proteins for the formation of new synapses. Coexisting synaptic plasticity and synaptic degeneration were observed in the patients under study. Dendritic and astrocyte synapse-like junctions were also characterized.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号