首页 | 本学科首页   官方微博 | 高级检索  
检索        


Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappaB signaling
Authors:Wang Zhiwei  Kong Dejuan  Banerjee Sanjeev  Li Yiwei  Adsay N Volkan  Abbruzzese James  Sarkar Fazlul H
Institution:Department of Pathology, Karmanos Cancer Institute, Wayne State University, 9374 Scott Hall, 540 East Canfield, Detroit, MI 48201, USA.
Abstract:Platelet-derived growth factor-D (PDGF-D) signaling plays critical roles in the pathogenesis and progression of human malignancies; however, the precise mechanism by which PDGF-D causes tumor cell invasion and angiogenesis remain unclear. Because Notch-1, nuclear factor-kappaB (NF-kappaB), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether PDGF-D down-regulation could be mechanistically associated with the down-regulation of Notch-1, NF-kappaB, VEGF, and MMP-9, resulting in the inhibition of tumor cell invasion and angiogenesis. Our data showed that down-regulation of PDGF-D leads to the inactivation of Notch-1 and NF-kappaB DNA-binding activity and, in turn, down regulates the expression of its target genes, such as VEGF and MMP-9. We also found that the down-regulation of PDGF-D by small interfering RNA (siRNA) decreased tumor cell invasion, whereas PDGF-D overexpression by cDNA transfection led to increased cell invasion. Consistent with these results, we also found that the down-regulation of PDGF-D not only decreased MMP-9 mRNA and its protein expression but also inhibited the processing of pro-MMP-9 protein to its active form. Moreover, conditioned medium from PDGF-D siRNA-transfected cells showed reduced levels of VEGF and, in turn, inhibited the tube formation of human umbilical vascular endothelial cells, suggesting that down-regulation of PDGF-D leads to the inhibition of angiogenesis. Taken together, we conclude that the down-regulation of PDGF-D by novel approaches could lead to the down-regulation of Notch-1 and, in turn, inactivate NF-kappaB and its target genes (i.e., MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号