首页 | 本学科首页   官方微博 | 高级检索  
     

微阵列数据中的先验信息对基于LASSO变量选择方法影响的模拟研究
摘    要:目的探讨微阵列数据中的先验信息对基于LASSO变量选择方法的影响。方法设置真实模型后,逐步融合先验信息,采用R、MATLAB软件编程,模拟比较先验信息对LASSO,group LASSO(简称为g LASSO)中的non-overlap group LASSO(简称为nog LASSO)和overlap group LASSO(简称为og LASSO)变量选择的影响。结果经典的LASSO、og LASSO变量选择方法在处理模拟微阵列数据时具有较好的预测精度(AUCLASSO=0.8915≈AUCog LASSO=0.8923AUCnog LASSO=0.8396,MSEnog LASSO=0.1358MSEog LASSO=0.0975≈MSELASSO=0.0928),LASSO可解释性最强(平均入选模型基因数分别为21.52、111.95、101.01)。nog LASSO在处理基因通路信息时,当[X295]被错分至第19个通路后,尽管未改变其效应值,但入选模型次数大为减少,预测精度下降较为明显,而og LASSO表现更稳健。结论融合微阵列数据中的先验信息并未提高基于LASSO变量选择方法的预测性能及效率,经典的LASSO变量选择方法仍为处理微阵列数据的有效方法。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号