首页 | 本学科首页   官方微博 | 高级检索  
检索        


PRIMARY ACTIVE TRANSPORT OF PROVASTATIN ACROSS THE LIVER CANALICULAR MEMBRANE IN NORMAL AND MUTANT EISAI HYPERBILIRUBINAEMIC RATS
Authors:Masayo Yamazaki  Kazuo Kobayashi  Yuichi Sugiyama
Abstract:We have previously demonstrated that the HMG-CoA reductase inhibitor pravastatin is efficiently taken up by the liver via the ‘multispecific anion transporter’ in an active manner.3 To further examine the fate of pravastatin within the liver, its biliary excretion was studied in a single-pass liver perfusion system and isolated liver canalicular membrane vesicles (CMVs) using normal (Sprague–Dawley rats; SDRs) and mutant Eisai hyperbilirubinaemic rats (EHBRs). In the liver perfusion experiments, the outflowing drug concentration reached a steady state at 30 min and the extraction ratio was approximately 0·7 in both rat strains. Both the steady state biliary excretion rate and bile flow rate of the EHBR group were 40% of those of SDRS. At steady state, the fraction of unchanged drug in bile was 25–34% in both groups. The concentration ratios of unbound drug in cytosol versus that in sinusoid and of that in bile versus that in cytosol were, respectively, 11 and 87 in SDRs, and 13 and 94 in EHBRs. After correction for the membrane potential (−40 mV in cytosol), the ratios became 49 and 19 in SDR and 58 and 21 in EHBRs, respectively. The finding that all of these values were much larger than unity suggested that active transport occurred from liver to bile, as well as from plasma to liver, in both rat strains. Furthermore, ATP-dependent uptake of pravastatin was clearly observed in CMVs prepared from EHBRs as well as SDRs, whereas the stimulation by ATP of DNP-SG transport in CMVs was observed only in SDRs. It was concluded that pravastatin is excreted into bile in high concentrations and a primary active transport mechanism which is maintained in EHBRs contributes to the biliary excretion of this drug.
Keywords:pravastatin  primary active transport  Eisai hyperbilirubinaemic rat  perfused rat liver  organic anions  canalicular membrane vesicle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号