首页 | 本学科首页   官方微博 | 高级检索  
     


COVID-19 Surveillance Updates in US Metropolitan Areas: Dynamic Panel Data Modeling
Authors:Theresa B Oehmke  Charles B Moss  James F Oehmke
Affiliation:1. Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States ; 2. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States ; 3. Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
Abstract:BackgroundDespite the availability of vaccines, the US incidence of new COVID-19 cases per day nearly doubled from the beginning of July to the end of August 2021, fueled largely by the rapid spread of the Delta variant. While the “Delta wave” appears to have peaked nationally, some states and municipalities continue to see elevated numbers of new cases. Vigilant surveillance including at a metropolitan level can help identify any reignition and validate continued and strong public health policy responses in problem localities.ObjectiveThis surveillance report aimed to provide up-to-date information for the 25 largest US metropolitan areas about the rapidity of descent in the number of new cases following the Delta wave peak, as well as any potential reignition of the pandemic associated with declining vaccine effectiveness over time, new variants, or other factors.MethodsCOVID-19 pandemic dynamics for the 25 largest US metropolitan areas were analyzed through September 19, 2021, using novel metrics of speed, acceleration, jerk, and 7-day persistence, calculated from the observed data on the cumulative number of cases as reported by USAFacts. Statistical analysis was conducted using dynamic panel data models estimated with the Arellano-Bond regression techniques. The results are presented in tabular and graphic forms for visual interpretation.ResultsOn average, speed in the 25 largest US metropolitan areas declined from 34 new cases per day per 100,000 population, during the week ending August 15, 2021, to 29 new cases per day per 100,000 population, during the week ending September 19, 2021. This average masks important differences across metropolitan areas. For example, Miami’s speed decreased from 105 for the week ending August 15, 2021, to 40 for the week ending September 19, 2021. Los Angeles, San Francisco, Riverside, and San Diego had decreasing speed over the sample period and ended with single-digit speeds for the week ending September 19, 2021. However, Boston, Washington DC, Detroit, Minneapolis, Denver, and Charlotte all had their highest speed of the sample during the week ending September 19, 2021. These cities, as well as Houston and Baltimore, had positive acceleration for the week ending September 19, 2021.ConclusionsThere is great variation in epidemiological curves across US metropolitan areas, including increasing numbers of new cases in 8 of the largest 25 metropolitan areas for the week ending September 19, 2021. These trends, including the possibility of waning vaccine effectiveness and the emergence of resistant variants, strongly indicate the need for continued surveillance and perhaps a return to more restrictive public health guidelines for some areas.
Keywords:surveillance system   COVID-19   coronavirus   Sars-CoV-2   Houston   dynamic panel data model   speed   jerk   acceleration   7-Day persistence   modeling   data   surveillance   monitoring   public health   United States   transmission   response
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号