首页 | 本学科首页   官方微博 | 高级检索  
     


Adhesive Films Based on Benzoxazine Resins and the Photoreactive Epoxyacrylate Copolymer
Authors:Agnieszka Kowalczyk  Marta Tokarczyk  Mateusz Weisbrodt  Konrad Gziut
Affiliation:Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 70-322 Szczecin, Poland; (M.T.); (M.W.); (K.G.)
Abstract:UV-cross-linkable and thermally curable self-adhesive structural tapes (SATs) were compounded using solid commercial benzoxazine resins (Araldite MT 35700 and Araldite MT 35910) and a photoreactive epoxyacrylate copolymer (EAC). As initiators of benzoxazine resin polymerization and epoxy component cationic polymerization, two kinds of latent curing agents (LCAs) were tested, i.e., amine type and ionic liquid type. The influence of the benzoxazine resin and the LCA type on the UV-cross-linking process, the self-adhesive features and thermal curing behavior of UV-cross-linked tapes, as well as the shear strength of cured aluminum/SAT/aluminum joints and thermal stability of adhesives were investigated. It was found that the amine additive and the benzoxazine resin take part in the UV-cross-linking process of the EAC as hydrogen donors, which is confirmed by an increase in cohesion (+86%) and a decrease in adhesion (−25%) of SATs. The highest results of adhesion to steel (47 N/25 mm) and overlap shear strength (11.1 MPa) values were registered for SATs based on Araldite MT 35910 and contained 7.5 wt. parts of the amine-type hardener. The formation of a polyacrylate-benzoxazine network has a significant impact on the course of the thermal curing process and the thermomechanical properties of adhesive joints, which was also confirmed by the Cure Index calculation.
Keywords:benzoxazine resins   structural adhesives   epoxyacrylate copolymers   polymer blends   UV-cross-linking   adhesion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号