首页 | 本学科首页   官方微博 | 高级检索  
检索        


Prediction of Rockfill Materials’ Shear Strength Using Various Kernel Function-Based Regression Models—A Comparative Perspective
Authors:Mahmood Ahmad  Ramez A Al-Mansob  Irfan Jamil  Mohammad A Al-Zubi  Mohanad Muayad Sabri Sabri  Arnold C Alguno
Abstract:The mechanical behavior of the rockfill materials (RFMs) used in a dam’s shell must be evaluated for the safe and cost-effective design of embankment dams. However, the characterization of RFMs with specific reference to shear strength is challenging and costly, as the materials may contain particles larger than 500 mm in diameter. This study explores the potential of various kernel function-based Gaussian process regression (GPR) models to predict the shear strength of RFMs. A total of 165 datasets compiled from the literature were selected to train and test the proposed models. Comparing the developed models based on the GPR method shows that the superlative model was the Pearson universal kernel (PUK) model with an R-squared (R2) of 0.9806, a correlation coefficient (r) of 0.9903, a mean absolute error (MAE) of 0.0646 MPa, a root mean square error (RMSE) of 0.0965 MPa, a relative absolute error (RAE) of 13.0776%, and a root relative squared error (RRSE) of 14.6311% in the training phase, while it performed equally well in the testing phase, with R2 = 0.9455, r = 0.9724, MAE = 0.1048 MPa, RMSE = 0.1443 MPa, RAE = 21.8554%, and RRSE = 23.6865%. The prediction results of the GPR-PUK model are found to be more accurate and are in good agreement with the actual shear strength of RFMs, thus verifying the feasibility and effectiveness of the model.
Keywords:shear strength  rockfill materials  Gaussian functions  polynomial kernel  radial basis function  Pearson universal kernel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号