首页 | 本学科首页   官方微博 | 高级检索  
检索        


SARS-CoV-2 infection and vaccination trigger long-lived B and CD4+ T lymphocytes with implications for booster strategies
Authors:Alessio Mazzoni  Anna Vanni  Michele Spinicci  Giulia Lamacchia  Seble Tekle Kiros  Arianna Rocca  Manuela Capone  Nicoletta Di Lauria  Lorenzo Salvati  Alberto Carnasciali  Elisabetta Mantengoli  Parham Farahvachi  Lorenzo Zammarchi  Filippo Lagi  Maria Grazia Colao  Francesco Liotta  Lorenzo Cosmi  Laura Maggi  Alessandro Bartoloni  Gian Maria Rossolini  Francesco Annunziato
Institution:1.Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.;2.Infectious and Tropical Diseases Unit.;3.Microbiology and Virology Unit.;4.Immunology and Cell Therapy Unit, and;5.Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy.
Abstract:BACKGROUNDImmunization against SARS-CoV-2, the causative agent of COVID-19, occurs via natural infection or vaccination. However, it is currently unknown how long infection- or vaccination-induced immunological memory will last.METHODSWe performed a longitudinal evaluation of immunological memory to SARS-CoV-2 up to 1 year after infection and following mRNA vaccination in naive individuals and individuals recovered from COVID-19 infection.RESULTSWe found that memory cells are still detectable 8 months after vaccination, while antibody levels decline significantly, especially in naive individuals. We also found that a booster injection is efficacious in reactivating immunological memory to spike protein in naive individuals, whereas it was ineffective in previously SARS-CoV-2–infected individuals. Finally, we observed a similar kinetics of decay of humoral and cellular immunity to SARS-CoV-2 up to 1 year following natural infection in a cohort of unvaccinated individuals.CONCLUSIONShort-term persistence of humoral immunity, together with the reduced neutralization capacity versus the currently prevailing SARS-CoV-2 variants, may account for reinfections and breakthrough infections. Long-lived memory B and CD4+ T cells may protect from severe disease development. In naive individuals, a booster dose restored optimal anti-spike immunity, whereas the needs for vaccinated individuals who have recovered from COVID-19 have yet to be defined.FUNDINGThis study was supported by funds to the Department of Experimental and Clinical Medicine, University of Florence (Project Excellence Departments 2018–2022), the University of Florence (project RICTD2122), the Italian Ministry of Health (COVID-2020-12371849), and the region of Tuscany (TagSARS CoV 2).
Keywords:COVID-19
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号