首页 | 本学科首页   官方微博 | 高级检索  
     


Desensitization of endothelial P2Y1 receptors by PKC-dependent mechanisms in pressurized rat small mesenteric arteries
Authors:R Rodríguez-Rodríguez  P Yarova  P Winter  KA Dora
Affiliation:Department of Pharmacology, University of Oxford, Oxford, UK
Abstract:

Background and purpose:

Extracellular nucleotides play a crucial role in the regulation of vascular tone and blood flow. Stimulation of endothelial cell P2Y1 receptors evokes concentration-dependent full dilatation of resistance arteries. However, this GPCR can desensitize upon prolonged exposure to the agonist. Our aim was to determine the extent and nature of P2Y1 desensitization in isolated and pressurized rat small mesenteric arteries.

Experimental approach:

The non-hydrolyzable selective P2Y1 agonist ADPβS (3 µM) was perfused through the lumen of arteries pressurized to 70 mmHg. Changes in arterial diameter and endothelial cell [Ca2+]i were obtained in the presence and absence of inhibitors of protein kinase C (PKC).

Key results:

ADPβS evoked rapid dilatation to the maximum arterial diameter but faded over time to a much-reduced plateau closer to 35% dilatation. This appeared to be due to desensitization of the P2Y1 receptor, as subsequent endothelium-dependent dilatation to acetylcholine (1 µM) remained unaffected. Luminal treatment with the PKC inhibitors BIS-I (1 µM) or BIS-VIII (1 µM) tended to augment concentration-dependent dilatation to ADPβS (0.1–3 µM) and prevented desensitization. Another PKC inhibitor, Gö 6976 (1 µM), was less effective in preventing desensitization. Measurements of endothelial cell [Ca2+]i in pressurized arteries confirmed the P2Y1 receptor but not M3 muscarinic receptor desensitization.

Conclusions and implications:

These data demonstrate for the first time the involvement of PKC in the desensitization of endothelial P2Y1 receptors in pressurized rat mesenteric arteries, which may have important implications in the control of blood flow by circulating nucleotides.
Keywords:P2Y1 receptor   NO   EDHF   mesenteric artery   desensitization   dilatation   endothelial cell Ca2+   endothelium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号