首页 | 本学科首页   官方微博 | 高级检索  
检索        


Characterization of a Campylobacter jejuni VirK Protein Homolog as a Novel Virulence Determinant
Authors:Veronica Novik  Dirk Hofreuter  Jorge E Galán
Institution:Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Ave., New Haven, Connecticut 06536
Abstract:Campylobacter jejuni is a leading cause of food-borne illness in the United States. Despite significant recent advances, its mechanisms of pathogenesis are poorly understood. A unique feature of this pathogen is that, with some exceptions, it lacks homologs of known virulence factors from other pathogens. Through a genetic screen, we have identified a C. jejuni homolog of the VirK family of virulence factors, which is essential for antimicrobial peptide resistance and mouse virulence.Campylobacter jejuni is a leading cause of infectious diarrhea in industrialized and developing countries (2, 67). Although most often self-limiting, C. jejuni infections can also lead to severe disease and harmful sequelae, such as Guillain-Barré syndrome (4, 55). Despite the significant progress made during the past few years, the mechanisms of C. jejuni pathogenesis remain poorly understood. A number of potential virulence factors have been identified, and in some cases, their role in virulence and/or colonization has been demonstrated in animal models of infection. For example, motility has been shown to be crucial in order for C. jejuni to colonize or cause disease in several animal models of infection (1, 15, 30, 54). A variety of surface structures, such as adhesins (34, 40, 64) and polysaccharides (5, 6), and glycosylation systems (38, 74), which presumably modify some of these surface structures, have also been shown to be important for infection. Additional studies have revealed the importance of specific metabolic pathways in C. jejuni growth both in vitro and within animals (16, 25, 31, 60, 76). The ability of C. jejuni to invade and survive within nonphagocytic cells has also been proposed to be an important virulence determinant (21, 41, 57, 58, 68, 75, 80).The available genome sequences of several C. jejuni strains have provided significant insight into C. jejuni physiology and metabolism (22, 32, 62, 63, 65). Remarkably, however, analysis of these C. jejuni genome sequences has revealed very few homologs of common virulence factors from other pathogens. A notable exception is the toxin CDT (cytolethal distending toxin), which is also encoded by several other important bacterial pathogens (36, 44, 45). In this paper we describe the identification of a transposon insertion mutant in C. jejuni 81-176, which results in increased susceptibility to antimicrobial peptides and a significant defect in the ability of the organism to cause disease in an animal model of infection. The insertion mutant was mapped to the CJJ81176_1087 open reading frame (Cj1069 in the C. jejuni NCT 11168 reference strain), which encodes a protein with very significant amino acid sequence similarity to the VirK (DUF535) family of virulence factors (13, 20, 56).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号