首页 | 本学科首页   官方微博 | 高级检索  
     


Regulatory circuit design and evolution using phage lambda
Authors:Atsumi Shota  Little John W
Affiliation:Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA.
Abstract:Bistable gene regulatory circuits can adopt more than one stable epigenetic state. To understand how natural circuits have this and other systems properties, several groups have designed regulatory circuits de novo. Here we describe an alternative approach. We have modified an existing bistable circuit, that of phage lambda. With this approach, we used powerful genetic selections to identify functional circuits and selected for variants with altered behavior. The lambda circuit involves two antagonistic repressors, CI and Cro. We replaced lambda Cro with a module that included Lac repressor and several lac operators. Using a combinatorial approach, we isolated variants with different types of regulatory behavior. Several resembled wild-type lambda--they could grow lytically, could form highly stable lysogens, and carried out prophage induction. Another variant could form stable lysogens in the presence of a ligand for Lac repressor but switched to the lytic state when the ligand was removed. Several isolates evolved toward a desired behavior under selective pressure. These results strongly support the idea that complex circuits can arise during the course of evolution by a combination of simpler regulatory modules. They also underscore the advantages of modifying a natural circuit as an approach to understanding circuit design, systems behavior, and circuit evolution.
Keywords:Gene regulatory circuit   lambda phage   circuit design   Lac repressor   evolution of gene regulatory circuitry   systems behavior
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号