首页 | 本学科首页   官方微博 | 高级检索  
     


Modular control of muscle coordination patterns during various stride time and stride length combinations
Affiliation:1. Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan;2. School of Health and Sport Sciences, Chukyo University, 101-2 Yagoto Honmachi, Showa-ku, Nagoya-shi, Aichi, Japan;3. Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
Abstract:BackgroundModular organization in muscular control is generally specified as synergistic muscle groups that are hierarchically organized. There are conflicting perspectives regarding modular organization for regulation of walking speeds, with regard to whether modular organization is relatively consistent across walking speeds. This conflict might arise from different stride time (time for one stride) and stride length combinations for achieving the same walking speed.Research questionDoes the regulation of the modular organization depend on stride time and stride length (stride time-length) combinations?MethodsTen healthy men walked at a moderate speed (nondimensional speed = 0.4) on a treadmill at five different stride time-length combinations (very short, short, preferred, long, and very long). Surface electromyograms from 16 muscles in the trunk and lower limb were recorded. The modular organization was modeled as muscle synergies, which represent groups of synchronously activated muscles. Muscle synergies were extracted using a decomposition technique. The number of synergies and their activation durations were analyzed.ResultsThe number of synergies was consistent in the preferred and quasi-preferred condition (median: 4.5 [short], 4.5 [preferred], 5 [long]), while it varied in the extreme condition (median: 4 [very short] and 6 [very long]; 0.02 ≤ p ≤ 0.09). Gait parameters (stride time, stride length, stance time, swing time, and double stance time) were significantly different for preferred and quasi-preferred conditions (p < 0.03).SignificanceOur results provide additional insights on the flexibility of modular control during walking, namely that the number of synergies or activations are fine-tuned even within one walking speed. Our finding implies that a variety of walking patterns can be achieved by consistent synergies except for extreme walking patterns.
Keywords:Electromyograms  Central nervous system  Kinematics  Walking  Motor control
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号