首页 | 本学科首页   官方微博 | 高级检索  
     


Selenite biotransformation to volatile metabolites in an isolated hepatocyte model system
Authors:Annika Ståhl  Irene Anundi  Johan Högberg
Affiliation:1. Division of Occupational Toxicology, Research Department, National Board of Occupational Safety and Health, S-171 84 Solna, Sweden;1. Department of Forensic Medicine, Karolinska Institutet, Box 60400, S-104 01 Stockholm, Sweden
Abstract:The biotransformation of selenite to dimethylselenide was studied in an oxygenated hepatocyte model system. The concentrations of selenite used were 20-100 microM. A lag period of one hour or more, during which no net formation of selenide could be detected characterized the system. The maximal rate of volatilization was recorded during the second hour and was 0.13 nmoles/10(6) cells/min with 50 microM selenite. The rate then declined and volatilization eventually ceased. Two-thirds of the added amount of Se was lost within 4 hr. Oxidation of glutathione (GSH) by cumene hydroperoxide delayed volatilization. An inhibitor of gluconeogenesis, p-tert-butylbenzoic acid (3 microM) prevented volatilization. There were indications that GSSG reductase dependent metabolism was the only major metabolic pathway in hepatocytes under the conditions studied. During the lag period Se accumulated in cells, but was subsequently partially released during volatilization. The accumulation of Se was paralleled by an increase in oxygen uptake. The above mentioned inhibitors of volatilization prolonged the phase of accumulation. With 50 microM selenite the rate of accumulation was 0.06 nmoles/10(6) cells/min and maximally 30-35% of the added dose was retained in the cells. The results are compatible with the assumption that Se mainly accumulated as Se-glutathione complexes. The possibility that such complexes autooxidized and entered futile redox cycles during the lag period is discussed.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号