首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of inhibition by haloperidol and chlorpromazine of a voltage-activated K+ current in rat phaeochromocytoma cells.
Authors:K. Nakazawa   K. Ito   S. Koizumi   Y. Ohno     K. Inoue
Affiliation:Division of Pharmacology, National Institute Health Sciences, Tokyo, Japan.
Abstract:1. Inhibition by haloperidol and chlorpromazine of a voltage-activated K+ current was characterized in rat phaeochromocytoma PC12 cells by use of whole-cell voltage-clamp techniques. 2. Haloperidol or chlorpromazine (1 and 10 microM) inhibited a K+ current activated by a test potential of +20 mV applied from a holding potential of -60 mV. The K+ current inhibition did not exhibit voltage-dependence when test potentials were changed between -10 and +40 mV or when holding potentials were changed between -120 and -60 mV. 3. Effects of compounds that are related to haloperidol and chlorpromazine in their pharmacological actions were examined. Fluspirilene (1 and 10 microM), an antipsychotic drug, inhibited the K+ current, but pimozide (1 and 10 microM), another antipsychotic drug did not significantly inhibit the K+ current. Sulpiride (1 or 10 microM), an antagonist of dopamine D2 receptors, did not affect the K+ current whereas (+)-SCH-23390 (10 microM), an antagonist of dopamine D1 receptors, reduced the K+ current. As for calmodulin antagonists, W-7 (100 microM), but not calmidazolium (1 microM), reduced the K+ current. 4. The inhibition by haloperidol or chlorpromazine of the K+ current was abolished when GTP in intracellular solution was replaced with GDP beta S. Similarly, the inhibition by pimozide, fluspirilene, (+)-SCH-23390 or W-7 was abolished or attenuated in the presence of intracellular GDP beta S. The inhibition by haloperidol or chlorpromazine was not prevented when cells were pretreated with pertussis toxin or when K-252a, an inhibitor of a variety of protein kinases, was included in the intracellular solution. 5. Haloperidol and chlorpromazine reduced a Ba2+ current permeating through Ca2+ channels. Inhibition by haloperidol or chlorpromazine of the Ba2+ current was not affected by GDP beta S included in the intracellular solution. 6. It is concluded that haloperidol and chlorpromazine inhibit voltage-gated K+ channels in PC12 cells by a mechanism involving GTP-binding proteins. The inhibition may not be related to their activity as antagonists of dopamine D2 receptors or calmodulin antagonists.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号