首页 | 本学科首页   官方微博 | 高级检索  
     


Both normal and transforming PCPH proteins have guanosine diphosphatase activity but only the oncoprotein cooperates with Ras in activating extracellular signal-regulated kinase ERK1
Authors:Recio J A  Páez J G  Maskeri B  Loveland M  Velasco J A  Notario V
Affiliation:Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA.
Abstract:Previous reports from our laboratory described the activation of the PCPH gene into the PCPH oncogene (mt-PCPH, reported previously as Cph) by a single point mutational deletion. As a consequence, the mt-PCPH oncoprotein is a truncated form of the normal PCPH protein. Although both proteins have ribonucleotide diphosphate-binding activity, only mt-PCPH acted synergistically with a human H-Ras oncoprotein to transform murine NIH3T3 fibroblasts. We report here the expression of the PCPH and mt-PCPH proteins in Escherichia coli and the finding that the purified bacterial recombinant proteins have intrinsic guanosine diphosphatase (GDPase) activity. However, expression of the Syrian hamster PCPH and mt-PCPH proteins in haploid yeast strains engineered to be GDPase deficient by targeted disruption of the single GDA1 allele did not complement their glycosylation-disabled phenotype, suggesting the existence of significant functional differences between the mammalian and yeast enzymes. Results from transient cotransfections into NIH3T3, COS-7, or 293T cells indicated that, in mammalian cells, both PCPH and mt-PCPH cause an overall down-regulation of the stimulatory effect of epidermal growth factor or the activated ras or raf oncogenes on the Ras/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway. However, despite this overall negative regulatory role on Ras signaling, mt-PCPH, but not PCPH, cooperated with the Ras oncoprotein to produce a prolonged stimulation of the phosphorylation of ERK1 but had no effect on the phosphorylation levels of ERK2. These results represent a clear difference between the mechanisms of action of PCPH and mt-PCPH and suggest that the ability to cause a sustained activation of ERK1 may be an important determinant of the transforming activity of mt-PCPH.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号