首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of spirotetramat on the acute toxicity,oxidative stress,and lipid peroxidation in Chinese toad (Bufo bufo gargarizans) tadpoles
Affiliation:1. College of Plant Science, Jilin University, Changchun 130062, China;2. Department of Entomology, China Agricultural University, Beijing 100193, China;3. Department of Entomology, Jilin Agricultural University, Changchun 130118, China;1. College of Plant Science, Jilin University, Changchun 130062, PR China;2. Department of Entomology, China Agricultural University, Beijing 100193, PR China
Abstract:The aim of this work was to evaluate the potential effects of antioxidant and lipid peroxidation parameters as indicators of exposure to spirotetramat and effects of acute toxicity in the Chinese toad Bufo bufo gargarizans. The results of an acute toxicity test showed that the 72 and 96 h median lethal concentrations (LC50) of spirotetramat for tadpoles were 6.98 and 6.45 mg/L, respectively. It indicated that the spirotetramat was moderate toxicity to Chinese toad tadpoles. In a sub-lethal toxicity test, the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) contents were determined after exposure to 0.03, 0.06, 0.13, 0.65, and 3.23 mg/L for 4, 15, and 30 days. SOD activity significantly in all experimental groups except the highest concentration group increased on day 4 but decreased on days 15 compared with that of the acetone control (P < 0.05). The most sensitive parameters was GSH-Px activity, which significantly increased on day 4, but was inhibited and decreased after prolonged exposure for 15 and 30 days except the lowest concentration treatment group (P < 0.05). The MDA content significantly decreased on day 30 (P < 0.05). During the entire experimental period, sub-lethal doses spirotetramat caused oxidative stress and lipid peroxidation in B. gargarizans tadpoles. These results indicate that sub-lethal even non-lethal spirotetramat are potentially toxic to amphibians. The information presented in this study will be helpful for understanding oxidative stress induced by spirotetramat in aquatic organisms.
Keywords:Spirotetramat  Antioxidant enzyme  Lipid peroxidation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号