Cytokine mobilization of bone marrow cells and pancreatic lesion do not improve streptozotocin-induced diabetes in mice by transdifferentiation of bone marrow cells into insulin-producing cells |
| |
Authors: | Lavazais E Pogu S Saï P Martignat L |
| |
Affiliation: | Cellular and Molecular Immuno-Endocrinology, Inra/ENVN/University, Atlanpole, La Chantrerie, BP 40706, 44307 Nantes cedex 03, France. |
| |
Abstract: | OBJECTIVE: Transdifferentiation of bone marrow cells (BMC) into insulin-producing cells might provide a new cellular therapy for type I diabetes, but its existence is controversial. Our aim was to determine if those cells could transdifferentiate, even at low frequency, into insulin-producing cells, in testing optimized experimental conditions. METHODS: We grafted mice with total BMC, genetically labeled either ubiquitarily, or with a marker conditionally expressed under the control of the insulin beta-cell specific promoter. We treated some of the recipients with an agent toxic to beta-cells (streptozotocin) and with cytokines stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF). RESULTS: The contribution of grafted cells could be detected neither for natural turnover (n=6), nor for beta-cell regeneration after pancreatic lesion (n=7), 90 days post-transplantation. Cytokine mobilization of BMC in the blood stream, reported to favor their transdifferentiation into cardiac and neural cells, had never been tested before for beta-cell generation. Here, we showed that injection of SCF and G-CSF did not lead to a detectable level of transdifferentiation (n=7). CONCLUSIONS: We conclude that BMC cannot spontaneously transdifferentiate into insulin-producing cells in vivo, even after beta-cell lesion and mobilization induced by cytokines. Interestingly, however, treatment by cytokines may have beneficial indirect effects on STZ-induced hyperglycaemia. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|