首页 | 本学科首页   官方微博 | 高级检索  
检索        


Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials
Authors:Itthichaisri C  Wiedmann-Al-Ahmad M  Huebner U  Al-Ahmad A  Schoen R  Schmelzeisen R  Gellrich N-C
Institution:Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universit?t Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany.
Abstract:In vitro studies about the growth behavior of osteoblasts onto biomaterials is a basic knowledge and a screening method for the development and application of scaffolds in vivo. In this in vitro study human osteoblast-like (HOB) cells were cultured on seven different biomaterials used in dental and craniomaxillofacial surgery, respectively. The tested biomaterials were synthetic biodegradable (MacroPore, Ethisorb, PDS, Beriplast P) and nonbiodegradable polymers (Palacos) as well as calcium phosphate cement (BoneSource) and titanium. The cell proliferation and cell colonization were analyzed by scanning electron microscopy and EZ4U-test. Statistical analysis were performed. HOB-like cells cultivated on Ethisorb showed the highest proliferation rate. The proliferation rate was statistically significant compared with Palacos, MacroPore, and BoneSource. Whereas, Beriplast, PDS, and titanium yielded lower proliferation rates. However, there was no statistically significant difference compared with Palacos, MacroPore, and BoneSource. SEM analysis showed no significant difference in individual cell features and cell colonization. But an infiltration and a growth of HOB-like cells throughout the porous structure of Ethisorb, which is formed by crossing fibers, is a striking different feature (macrotopography). This feature can explain the highest proliferation rate of Ethisorb. The results showed that HOB-like cells appear to be sensitive to substrate composition and topography. Moreover, the basis for further studies with such biomaterial/osteoblast constructs in vivo are provided. Further focusing points are developing techniques to fabricate three-dimensional porous biomaterial/cell constructs, studying the tissue reaction and the bone regeneration of such constructs compared with the use of autologous bone.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号