首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of maternal starvation on hepatocyte proliferation in the late gestation fetal rat
Authors:Gruppuso Philip A  Boylan Joan M  Anand Padmanabhan  Bienieki Theresa C
Affiliation:Department of Pediatrics, Rhode Island Hospital and Brown University, 593 Eddy St., Providence, RI 02903, USA. Philip_Gruppuso@brown.edu
Abstract:Fetal growth retardation, a common end point for a variety of conditions affecting mother and fetus, is associated with reduced liver mass. We have performed studies to determine the mechanism for decreased liver mass in a maternal starvation model of fetal growth restriction in the rat. Pregnant dams were deprived of food for 48 h before delivery on embryonic day 19 (E19). Fetal body weight was not affected. However, fetal liver weight was reduced by approximately 15%. Immunostaining of fetal liver for proliferating cell nuclear antigen and flow cytometry on isolated fetal hepatocytes showed G1 cell cycle arrest in samples from starved dams. Based on our prior studies showing attenuated hepatic insulin signaling in the late gestation fetal rat, we tested the hypothesis that G1 arrest in our model might be due to altered nutrient signaling. Fetal plasma amino acid analyses showed no decrease in branched-chain amino acids, but arginine concentrations were decreased in fetuses of fasted mothers. Reduced arginine in E19 fetal hepatocyte culture media was associated with decreased DNA synthesis. Whereas levels of cyclins D and E were unchanged in fetal hepatocytes exposed to low arginine, cyclin E-dependent kinase activity was reduced. Low arginine also induced changes in the translational machinery, indicative of impaired signaling through the nutrient sensing kinase mammalian target of rapamycin. Our results are consistent with the hypothesis that restricted nutrient availability signals to the hepatocyte cell cycle in fetuses of fasted mothers, thereby accounting for decreased hepatocyte proliferation and liver mass.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号