首页 | 本学科首页   官方微博 | 高级检索  
检索        


Strain‐dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions
Authors:Yang Xia  Nian Wang  Jihyun Lee  Farid Badar
Institution:Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
Abstract:To investigate the dependency of T1 relaxation on mechanical strain in articular cartilage, quantitative magnetic resonance T1 imaging experiments were carried out on cartilage before/after the tissue was immersed in gadolinium contrast agent and when the tissue was being compressed (up to ~48% strains). The spatial resolution across the cartilage depth was 17.6 μm. The T1 profile in native tissue (without the presence of gadolinium ions) was strongly strain‐dependent, which is also depth‐dependent. At the modest strains (e.g., 14% strain), T1 reduced by up to 68% in the most surface portion of the tissue. Further compression (e.g., 45% strain) reduced T1 mostly in the middle and deep portions of the tissue. For the gadolinium‐immersed tissue, both modest and heavy compressions (up to 48% strain) increased T1 slightly but significantly, although the overall shapes of the T1 profiles remained approximately the same regardless of the amount of strains. The complex relationships between the T1 profiles and the mechanical strains were a direct consequence of the depth‐dependent proteoglycan concentration in the tissue, which determined the tissue's mechanical properties. This finding has potential implications in the use of gadolinium contrast agent in clinical magnetic resonance imaging of cartilage (the dGEMRIC procedure), when the loading or loading history of patients is considered. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
Keywords:MRI  articular cartilage  T1 relaxation  strain  dGEMRIC  gadolinium contrast agent
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号