首页 | 本学科首页   官方微博 | 高级检索  
     


Fatigue and optimal conditions for short-term work capacity
Authors:Brian R. MacIntosh  Krista Svedahl  Minhan Kim
Affiliation:(1) Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
Abstract:There is an optimal load and corresponding velocity at which peak power output occurs. It is reasonable to expect that these conditions will change as a result of fatigue during 30 s of all-out cycling. This study evaluated optimal velocity after 30 s of maximal isokinetic cycle ergometer exercise and tested the hypothesis that progressive adjustment of velocity (optimized) during 30 s of all-out cycling would permit greater short-term work capacity (STWC). Non-fatigued optimal cadence [NFOC, 109.6 (2.5) rpm] was determined for ten males on an SRM ergometer using regression analysis of the torque–angular velocity relation during a 7-s maximal acceleration. Fatigued optimal cadence [73.4 (2.4) rpm] was determined in the same way, immediately after a 30-s isokinetic test at NFOC. A subsequent trial with cadence decreasing in steps from NFOC to a conservative estimate of fatigued optimal cadence [83.9 (2.8) rpm] was completed to see if more work could be done with a more optimal cadence during the test. STWC was not different (P=0.50) between the constant [23,681 (764) J] and optimized [23,679 (708) J] conditions. Another more radical progressive change in cadence with four subjects yielded the same result (no increase in STWC). Extraneous factors apparently contribute more to variability in STWC than differences between constant and adjusted optimization of conditions.
Keywords:Isokinetic cycle ergometry  Anaerobic power  Wingate test
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号