首页 | 本学科首页   官方微博 | 高级检索  
检索        


A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction
Authors:Pattin Kristine A  White Bill C  Barney Nate  Gui Jiang  Nelson Heather H  Kelsey Karl T  Andrew Angeline S  Karagas Margaret R  Moore Jason H
Institution:Computational Genetics Laboratory, Department of Genetics, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
Abstract:Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model‐free data mining method for detecting, characterizing, and interpreting epistasis in the absence of significant main effects in genetic and epidemiologic studies of complex traits such as disease susceptibility. The goal of MDR is to change the representation of the data using a constructive induction algorithm to make nonadditive interactions easier to detect using any classification method such as naïve Bayes or logistic regression. Traditionally, MDR constructed variables have been evaluated with a naïve Bayes classifier that is combined with 10‐fold cross validation to obtain an estimate of predictive accuracy or generalizability of epistasis models. Traditionally, we have used permutation testing to statistically evaluate the significance of models obtained through MDR. The advantage of permutation testing is that it controls for false positives due to multiple testing. The disadvantage is that permutation testing is computationally expensive. This is an important issue that arises in the context of detecting epistasis on a genome‐wide scale. The goal of the present study was to develop and evaluate several alternatives to large‐scale permutation testing for assessing the statistical significance of MDR models. Using data simulated from 70 different epistasis models, we compared the power and type I error rate of MDR using a 1,000‐fold permutation test with hypothesis testing using an extreme value distribution (EVD). We find that this new hypothesis testing method provides a reasonable alternative to the computationally expensive 1,000‐fold permutation test and is 50 times faster. We then demonstrate this new method by applying it to a genetic epidemiology study of bladder cancer susceptibility that was previously analyzed using MDR and assessed using a 1,000‐fold permutation test. Genet. Epidemiol. 2008. © 2008 Wiley‐Liss, Inc.
Keywords:extreme value distribution  permutation testing  power  type I error  bladder cancer  data mining
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号