首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in signal transduction downstream from the granulocyte-macrophage colony-stimulating factor receptor during differentiation of primary hemopoietic cells.
Authors:H Wheadon  P J Roberts  M J Watts  D C Linch
Affiliation:Department of Haematology, University College London Medical School, United Kingdom.
Abstract:Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifunctional cytokine, having different effects on primitive hemopoietic cells and terminally differentiated end-cells of the myeloid lineage. Human primitive hemopoietic cells (CD34+) were obtained from the peripheral blood after mobilization and induced to proliferate and then differentiate with a combination of cytokines in vitro. Cells at different time points were then used to analyze the expression of the GM-CSF receptor and GM-CSF mediated activation of the JAK 2-STAT 5 and MAP kinase pathways. Scatchard analysis as measured by radioligand binding revealed that freshly purified CD34+ cells expressed 36+/-1 high affinity receptors per cell (mean +/- SE, n = 3) and the level of expression was not significantly different after 3 days in culture, but rose five- to tenfold by day 8. The day 0 CD34+ cells were hyporesponsive to GM-CSF, but by 3 days in culture the cells were still morphologically immature but were actively proliferating and exhibited maximal GM-CSF induced JAK 2-STAT 5 and MAP kinase activation at the optimal time point. Further culture of the CD34+ cells resulted in myeloid differentiation associated with prolongation of MAP kinase activation but not JAK 2-STAT 5 activation. These data indicate that the JAK 2-STAT 5 and MAP kinase pathways are independently regulated and that changes in these signaling pathways occur with differentiation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号