首页 | 本学科首页   官方微博 | 高级检索  
     


Interactions between endothelin and nitric oxide in the regulation of vascular tone in obesity and diabetes
Authors:Mather Kieren J  Lteif Amale  Steinberg Helmut O  Baron Alain D
Affiliation:Division of Endocrinology & Metabolism, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. kmather@iupui.edu
Abstract:Endothelial dysfunction reflects an imbalance of vasodilators and vasoconstrictors. Endogenous endothelin activity seems to be increased in human obesity and type 2 diabetes, and cellular studies suggest that this factor may itself reduce bioavailable nitric oxide (NO). We studied 20 lean, 20 obese, and 14 type 2 diabetic individuals under three protocols, measuring leg vascular responses to intra-arterial infusions of NG-monomethyl-l-arginine (l-NMMA; an inhibitor of NO synthase) alone or in combination with BQ123 (an antagonist of type A endothelin receptors) or phentolamine (used as a control vasodilator). NO synthase inhibition alone (study 1) produced an approximately 40% increase in leg vascular resistance (LVR) in all three participant groups, which was not statistically different across groups (increase in LVR: lean, 135 +/- 28; obese, 140 +/- 32; type 2 diabetic, 184 +/- 51 units; NS). By design, BQ123 at the infused rate of 3 micromol/min produced equivalent approximately 35% reductions in LVR across groups. The subsequent addition of l-NMMA produced a greater increase in LVR among obese participants than lean or type 2 diabetic participants (study 2: lean, 182 +/- 48; obese, 311 +/- 66; type 2 diabetic, 186 +/- 40; P = 0.07). Compared with study 1, the effect of l-NMMA was magnified by BQ123 in obese participants but not in lean or type 2 diabetic participants (P = 0.005, study 1 vs. 2; P = 0.03 for group effect). Phentolamine (75 mg/min) produced vasodilation in obese participants comparable to that seen with BQ123 but failed to augment the L-NMMA response. Endothelin antagonism unmasks or augments NO synthesis capacity in obese but not type 2 diabetic participants. This suggests that impaired NO bioavailability as a result of endogenous endothelin may contribute to endothelial dysfunction in obesity, in addition to direct vasoconstrictor effects of endothelin. In contrast, endothelin antagonism alone is insufficient to restore impaired NO bioavailability in diabetes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号