首页 | 本学科首页   官方微博 | 高级检索  
     


Hyperosmolar solutions selectively block action potentials in rat myelinated sensory fibers: implications for diabetic neuropathy
Authors:Matsuka Yoshizo  Spigelman Igor
Affiliation:Division of Oral Biology and Medicine, UCLA School of Dentistry, University of California, Los Angeles, California 90095, USA.
Abstract:Diabetic neuropathy is a common complication of diabetes mellitus patients. It is a wide range of abnormalities affecting proximal and distal peripheral sensory and motor nerves. Although plasma hyperosmolality is a common finding in diabetes mellitus, the effects of hyperosmolality on conduction of various sensory signal components have not been addressed in detail. Here we show that in rat dorsal root ganglion (DRG) preparations from normal rats, hyperosmolar solutions (360 mmol/kg, containing increased glucose, sucrose, NaCl, or mannitol) produce a selective block of signal propagation in myelinated sensory A-fibers. In compound action potential (CAP) recordings with suction electrodes, peak A-fiber CAP amplitude was selectively decreased (20%), while the C-fiber peak remained intact or was slightly increased. Hyperosmolar solutions had smaller effects on conduction velocity (CV) of both A- and C-fibers (approximately 5% decrease). Hyperosmolality-induced CAP changes could not be observed during recordings from isolated spinal nerves but were evident during recordings from desheathed spinal nerves. In intracellular recordings, hyperosmolar solutions produced a block of spinal nerve-evoked action potential invasion into the somata of some A-fiber neurons. Removal of extracellular calcium completely prevented the hyperosmolality-induced CAP decreases. Based on these data, we propose that the decreased CAP amplitudes recorded in human patients and in animal models of diabetes are in part due to the effects of hyperosmolality and would depend on the extracellular osmolality at the time of sensory testing. We also hypothesize that hyperosmolality may contribute to both the sensory abnormalities (paresthesias) and the chronic pain symptoms of diabetic neuropathy.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号