首页 | 本学科首页   官方微博 | 高级检索  
检索        


Modeling cytoplasmic release of encapsulated oligonucleotides from cationic liposomes
Authors:Tamaddon Ali M  Shirazi Farshad H  Moghimi Hamid R
Institution:School of Pharmacy, Shaheed Beheshti Medical University, PO Box: 14155-6153, Tehran, Iran.
Abstract:Transfection activity of antisense oligodeoxynucleotides (ODN)-loaded cationic liposomes is mainly restricted by uptake and ODN release into cytoplasm, which is difficult to evaluate in cell culture studies. Well-designed models of cellular membranes, aim of the present study, might facilitate investigation of such processes. In this investigation, a phosphorothioate ODN was actively encapsulated in a DODAP-containing cationic liposome by ethanol injection with 73% efficiency. ODN release was determined by fluorescence dequenching of FITC-ODN upon incubation of liposomes with early endosomal (EE), late endosomal (LE) and plasma membranes (PM) models. LE provided the highest release (up to 76%) in a temperature-dependent manner. Release by EE (<16%), total PM (<11%) and PM external layer ( approximately 0) were not temperature sensitive. These differences are attributed to lipid charge, chain mobility, critical packing parameter and cholesterol content of the models. Intracellular distribution of FITC-ODN, determined by fluorescence microscopy and flowcytometry in the presence and absence of sodium azide, confirmed that liposomes were internalized mainly via endocytosis; hence inability of our PL models to simulate such active processes. Instead, release of ODN from endosomes into cytoplasm was pH-sensitive and in good agreement with model membrane studies in terms of amount and mechanism.
Keywords:Gene delivery  Cationic liposome  Antisense oligodeoxynucleotide  Encapsulation  Model membrane  Cytoplasmic release  Cellular uptake
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号